
The Consensus Problem in Fault-Tolerant Computing

MICHAEL BARBORAK AND MIROSLAW MALEK

Department of Electrical and Computer Engineering, Unmerslty of Texas, Austin. TX 78712

ANTON DAHBURA

Motorola, Inc., Cambridge Research Center, One Kendall Square, Bldg 200, Cambridge, MA 02139

The consensus problem is concerned with the agreement on a system status by the

fault-free segment of a processor population in spite of the possible inadvertent or even

malicious spread of disinformation by the faulty segment of that population. The

resulting protocols are useful throughout fault-tolerant parallel and distributed systems

and will impact the design of decision systems to come. This paper surveys research on

the consensus problem, compares approaches, outlines applications, and suggests

directions for future work.

Categories and Subject Descriptors: C.2.3 [Computer-Communication Networks]:
Network Operations—network management; network monitoring; C.2.4 [Computer-
Communication Networks]: Distributed Systems—distributed applications; network

operating systems; D.4.5 [Operating Systems]: Reliability—fazdt tolerance

General Terms: Algorithms, Design, Reliability

Additional Key Words and Phrases: Byzantine agreement, consensus problem, decision

theory, processor membership, system diagnosis

1. INTRODUCTION

It has long been the goal of system de-
signers to connect independent computer
resources together to create a network

with greater power and availability than
any of its parts. Unfortunately, the re-
verse can happen if faulty resources are
allowed to corrupt the network. In the
area of fault-tolerant computing, the con-
sensus problem is to form an agreement
among the fault-free members of the
resource population on a quantum of in-
formation in order to maintain the per-

formance and integrity of the system.
Such an agreement may be made on the
configuration of the system, the synchro-
nization of its clocks, the contents of its
communications, or any other value re-
quiring global consistency. The proposed
approach is to diagnose and/or contain
faults at the system level which will fa-
cilitate the consensus process. That is,
this paper looks at general techniques for
reaching agreement independent of the
data being manipulated. Work in the area
has increased with the proliferation of
distributed systems that range from

M. Malek was supported in part by ONR contract NOO014-88K-0543, ONR grant NOO014-91-J-1858, NASA

grant NAG9-426, and by IBM Agreement 203. M. Barborak was supported in part by a Microelectronics
and Computer Development Fellowship.

Permission to copy without fee all or part of this material is granted provided that the copies are not made

or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and\or specific permission.

@ 1993 ACM 0360 -0300 \93\0600-0171 $01.50

ACM Computing Surveys, Vol 25, No 2, June 1993

172 “ M. Barborak et al.

:ONTENTS

1.

2.

3

4

5,

6,

7.

8.

9,

10.

INTRODUCTION
FORMULATING THE CONSENSUS PROBLEM

2.1 The PMC Model

22 The Byzantine Generals Problem

THE FAULTY ELEMENT

3 1 Fault Models and Classes

32 Fault Impact
THE TEST

41 Self-Testing

42 Group Testing
4:3 Comparison Test, ng
44 Time Domam Testing
SPECIFYING THE CONSENSUS PROBLEM
5.1 Extensions to the PMC Model
52 Research on the Byzantine Generals Problem

DIAGNOSIS VERSUS AGREEMENT
APPLYING CONSENSUS PROTOCOLS

7.1 Apphcatlons of Byzantine Agreement
72 Appllcatlonsof Processor Membership

7,3 Appllcatlons of System-Level Dlagnosls

FUTURE RESEARCH

CONCLUSIONS

SUMMARY
iCKNOWLEIIGMENTS

?EFERENCES

small, local-area networks to large, real-
time, fault-tolerant systems such as that
proposed by IBM to fulfill Federal Avia-
tion Administration air-traffic control re-
quirements [Cristian 1990]. Consensus
solutions give a convenient and, some-
times, vital picture of the condition of the
network.

This paper surveys over 25 years of
research on this consensus problem. Sec-
tion 2 examines work on system diagno-

sis, which has sprung from the seminal
research done by Preparata et al. [1967]
and on the Byzantine Generals Problem

introduced by Lamport et al. [1982]. Sec-
tions 3 and 4 discuss how faulty proces-
sors are characterized and how they
might be detected with testing. Section 5
looks at extensions to the basic work done
on the consensus problem. Section 6 is a
comparison of system diagnosis and
Byzantine Generals Problem solutions.
Section 7 is devoted to applications of
consensus protocols, and Section 8 sug-
gests directions for future studies, fol-

lowed by conclusions and summary
Sections 9 and 10.

2. FORMULATING THE CONSENSUS

PROBLEM

in

The simple idea of consensus is to share
information among a group of processing
elements (PEs), preferably in a fault-
tolerant manner. That is, the fault-free
members of the PE population should be
able to consistently agree on and produce
correct results despite the actions, mali-
cious or not, of the faulty segment of the
population. The importance of the prob-
lem stems from its omnipresence. This
problem is at the core of protocols
handling synchronization, reliable com-

munication, resource allocation, task
scheduling, reconfiguration, replicated
file systems, sensor reading, and other
functions. Instead of looking at separate
algorithms for each of these tasks,
though, this paper surveys general tech-
niques for agreement.

A distributed operating system shows
the abundant need for consensus m-oce-
dures. Figure 1 shows a general l~yered
approach-to fault manag~ment in which
higher layers are dependent on lower
layers to produce a fault-tolerant system
from a basic system consisting of a group
of processors connected by some unre-
liable communication network [Malek
1991]. A similar approach is presented by
Cristian [1990]. The synchronization
laver uses time to allow m-ocessors to
recognize untimely messa~es, to detect
faulty processors, and to order timely
messages in implementing reliable com-
munications. Reliable communications let
fault-free processors ~ass fault-free mes-.
sages that are used to either diagnose or
mask faulty processors in order to agree
on a correct sequence of computations
and a correct result. Finally, the ability
to agree on a diagnosis allows the fault-
free processors to consistently reconfig-
ure after a fault.

What must be recognized is that each
of these layers is a separate consensus
problem. First, the synchronization level
maintains a global timepiece which is

ACM Computmg Surveys, Vol. 25, No, 2, June 1993

The Consensus Problem in Fault-Tolerant Computing ● 173

Fault Diagnosis or Masking

Reliable Communications

Figure 1. Consensus problems m fault management.

simply a consensus of all the fault-free
PEs on a particular time value and a rate
of change of that value. Second, using the
results of the synchronization layer, a
reliable communication is one processor
forming a consensus with another pro-
cessor on some set of information and the
order of transmission of that set [Cris-
tian et al. 1986]. Third, using the reliable
communications facility, a consensus on
the diagnosis of the system may be
formed by the fault-free PEs. Finally,
based on the diagnosis of the system,
reconfiguration is a concurrence by all
service users on the status of their
servers. Therefore, at a high level, the
fault-tolerant, distributed operating sys-
tem of Figure 1 consists entirely of con-
sensus procedures.

In turn, this operating system may be

used to implement fault tolerance with
the state machine approach [Schneider
1990; Cristian 1991a]. Here, a service is
a deterministic process or state machine
whose execution is based solely on the
reception of a message and which occa-
sionally produces output. A fault-tolerant
service is created by replicating the de-
sired server and the service requests of
its clients. At the heart of this technique
is the coordination of the service popula-
tion such that the failure of a member
will be recognized and tolerated. In other

words, a client, or any other destination
for a service output, must be able to de-
termine a correct result from the many
results produced by the service popula-
tion. Thus, the client uses a consensus
procedure to uncover the correct result,
i.e., the client provides a voting service to
its servers and itself.

Traditionally, the formation of a con-
sensus among several processors has
been implemented with n-modular re-
dundancy (NMR) at a great cost of
resources while only attaining the
throughput (jobs per unit time) of a sin-
gle PE. With NMR, n PEs perform the
same task. Thus, t faulty PEs, n > 2 t +
1,may be masked by taking a majority
vote of the n results.

The throughput of the n-processor sys-
tem could be increased by the number of
fault-free PEs if one could reliably deter-
mine which of the PEs were faulty. Then,
rather than mask the faulty processors,
the system could identify and ignore
them, thus allowing unique tasks to be
scheduled on each fault-free processor,
increasing the performance of the system
over the NMR technique by the number
of fault-free PEs. Therefore, a natural
goal is to diagnose, i.e., detect and locate,
faulty processors and to disseminate this
information to the fault-free processors.
If the diagnosis is correct, then the result

ACM Computing Surveys, Vol. 25, No 2, June 1993

174 “ itf. Barborak et al,

of each processor is as reliable as the
majority result of NMR with a perfect
voter. In other words, diagnosis allows
consensus to be performed in what is
assumed to be a fault-free environment.
Researchers in the field of system diag-
nosis have explored solutions of this type
for over 25 years [Preparata et al. 1967],
and the results are applicable to wafer
scale integration [Somani and Agarwal
1992; Rangarajan et al, 1990], large,
loosely-coupled, distributed computer
networks [Kuhl and Reddy 1980a],
tightly-coupled multiprocessors [Dal Cin
1982], and to other kinds of multicom-
puter systems. Surveys on system diag-
nosis may be found in Dahbura [1988],
Friedman and Simoncini [1980], Kreutzer

and Hakimi [1987], Kime [1986], and
Malek and Liu [1980].

A problem with diagnosis is that the
fault status of the system is obsolete,
although possibly correct, as soon as it is
calculated. Most likely a fault will re-
quire a recovery action. Therefore, NMR
techniques may still be needed when any
recovery procedure would be too costly.
But implementation of NMR requires a
voting mechanism that coalesces the n
results into a single output. Obviously,
the reliability of any process that uses
this output is directly related to the reli-
ability of the voting mechanism. If a sin-
gle process is using this result, then it is
sufficient for it to act as its own voter as
the voting process will fail exactly when
the process fails. But when (1) multiple
processors rely on the output of the NMR
system and (2) their subsequent compu-
tations must be consistent, then every
processor must be able to agree on the
output of the NMR system. In this case, a
single point of failure is unacceptable,
and the voting mechanism must be
distributed. Work on the Byzantine Gen-
erals Problem (BGP) or Byzantine agree-
ment explores the consensus problem
given the need to distribute the voting
process. A survey may be found in Ray-
nal [1988] while general overviews of the
consensus problem may be found in
Turek and Shasha [1992] and Simons
and Spector [1990].

Despite their different characteristics,
the Byzantine agreement and system di-
agnosis problems have very similar goals,
namely to produce a correct agreement
despite a number of faults. That is, given
a distributed system subject to failures,
methods are needed to allow the system
to progress in a consistent manner.
Specifically, such methods may provide
synchronization or reliable communi-
cation, but generally they allow the
fault-free processor population to reach
conclusions on the state of the system.
On the one hand, system diagnosis does
this by identifying faulty processors in
order that their impact may be avoided,
and on the other hand, Byzantine agree-
ment does this with protocols that will
mask any possible impact of the faulty
processors. Yet in spite of their similari-
ties in goals, the two areas have devel-
oped entirely apart with entirely differ-
ent assumptions guiding their develop-
ment. One goal of this paper is to show
the similarities in purpose of the two
approaches and to allow future research
to draw from both areas rather than to
continue apart.

In this second section, the problems of
system diagnosis and Byzantine agree-
ment are discussed as they were or-
iginally presented. Included in this
discussion are some of the immediate
ramifications of these proposals. In later
sections, the extensions and transforma-
tions that these early works underwent
are outlined.

2.1 The PMC Model

A system operating in a tightly or loosely
coupled, distributed environment must
avoid giving tasks to or using results
from faulty processing elements. There-
fore, it is necessary for a centralized op-
erating system, or for every processing
element, to be aware of the condition of
all the active PEs. This ability to agree
on the state of the system allows the
fault-free processors to make correct and
consistent progress. In 1967, Preparata,
Metze, and Chien (PMC) formed the
framework for much of the research in

ACM Computmg Surveys, Vol. 25, No. 2, June 1993

The Consensus Problem in Fault-Tolerant Computing “ 175

the system diagnosis area with their
model of this problem. [Preparata et al.
1967]. They eliminated the steep cost of
NMR and special testing hardware by
considering that a PE could test other
PEs and that the results could be used to
find the state of the system. However,
test results may not be reliable if the
testing PE is faulty! An analysis of the
effects of the PMC approach on processor
availability, diagnosability, and utiliza-
tion may be found in Dal Cin [1978; 1980]
and Dal Cin and Dilger [1981].

The PMC model uses a graph G(V, E)
to model the system’s testing convention.
PEs make up the set V, and directed
edges in E represent one processor ap-
plying a test to another processor, i.e.,
the directed edge (A, B) denotes that A
tests B. Each edge is labeled with a O(1)
if the corresponding test produces a pass-
ing (failing) result. The set of results is
known as a syndrome.

After completion of testing according
to G, a centralized arbiter interprets
the syndrome and deems each PE to be
either faulty or fault free. Certain as-
sumptions are made about the faulty
processors.

(Al) All failures are hard or permanent
faults.

(A2) A fault-free processor is always able
to determine accurately the condi-
tion of a PE it is testing.

(A3) A faulty processor produces unreli-
able test results.

(A4) Not more than t PEs may be faulty.

These assumptions are not necessarily
valid nor desired in a fault-tolerant, dis-
tributed network, and later work has
dealt with removing these restrictions.
The first problem with the PMC assump-
tions is supervisor-controlled diagnosis.
The implication is that all test data must
be gathered and analyzed with the result
distributed back to the system by a cen-
tralized supervisor be it a single PE or
an NMR group of PEs [Blount 1978]. This
is costly in terms of time, message pass-
ing, and system reliability, which is di-
rectly related to the reliability of this

supervisor. Assumption Al disallows in-
termittent and transient faults. A2
assumes that a test exists which is
complete or has 10070 fault coverage. In
reality, the coverage will be less than
100% even for a simple PE. A4 may
exclude many practical fault situations.

Figure 2 shows an example of system
diagnosis using the assumptions of the
PMC model. A through E are processors
where an edge (u ~, U2) represents a test

by VI on Uz. A label on an edge is the
result of that test. The table in the figure
relates the status of v ~ and v ~ to the
result of the test of u ~ on Uz. In the
figure, A is faulty as denoted by its gray
color. The “X” on the edge (A, 1?) means
that this result may be a one or a zero
according to A3 without affecting the
result of the diagnosis. If it is assumed in
A4 that t = 1, then it is possible to iden-
tify A as being faulty. First notice that
edge (E, A) is labeled “l” meaning A is
faulty if E is fault free. If E were faulty,
then it would be the single faulty mem-
ber of the system. So diagnosis depends
on deducing the condition of E. Either E
is faulty, or A is. Assume E is faulty in
which case D must be fault free since
t = 1. But this leads to a contradiction of
A2 because the label “O” on edge (D, E)
implies that fault-free D misdiagnosed
faulty E. Thus, E is fault free, and A is
faulty by A2 regardless of the actual
value of “X.” If more than one PE is
faulty, then credible system diagnosis is
not feasible under this model [Preparata
et al. 1967].

Preparata et al. [1967] were primarily
interested in systems that allowed unam-
biguous diagnosis in all cases under
assumptions Al through A4. Such sys-
tems are said to be t-diagnosable. In other
situations, though, they considered diag-
nosis in conjunction with system repair.
If it is not practical to diagnose a system
in multiple phases, then it must be possi-
ble to identify all the faulty processors
after one round of testing. In this case,
diagnosis is called one-step diagnosis or
diagnosis without repair. If the system is
repairable, then it is only necessary to
locate at least one faulty PE if it exists.

ACM Computing Surveys, Vol. 25, No. 2, June 1993

176 - A!l. Barborak etal

The characterization problem is to find

1 necessary and sufficient conditions for a
testing assignment to achieve a given
level of diagnosability given a fault model
and an allowable family of fault sets.
Hakimi and Amin [1974] gave a general

o solution for one-step t-diagnosable net-
works. As before, n > 2 t + 1, and each
PE must be tested by at least t distinct
other PEs. But also, for each integer p,.

Status of Tester PE Status of Tested PE Test Result
O s p < t, every subset X of processors,
whose cardinality is equal to n – 2 t + P,

Fault-F~e Fad[-Free o must be tested by mo’re than p proces~
Fault-Fsee Faulty 1

Faulty
sors outside of X. Fujiwara and Ozaki

Fault-Free x [1979] characterized systems in which
Faulty Faulty x some PEs cannot test other PEs and in

Figure 2. Example of the PMC model,

In this case, after a PE is diagnosed as
faulty, it can be repaired and the testing
continued to eventually diagnose all the
faulty PEs. Such diagnosis is called k-step
diagnosis, sequential diagnosis, or diag-
nosis with repair. For example, in Figure
2 consider that A and B are both faulty.
The syndrome is valid since tests given
by both A and B are unreliable. With
these two faulty PEs, it is not possible to
determine with the given syndrome
whether B is faulty. However, using our
previous argument, A must be faulty.
After A is repaired, the condition of B is
made obvious in the next round of test-
ing. Unless otherwise stated, “diagnosis”
will refer to diagnosis without repair, in
the remainder of this paper.

Preparata et al. [1967] showed that if
as many as t members of the PE popula-
tion may be faulty according to A4, then
it is necessary for the system to contain
n members, n > 2 t + 1, to be diagnos-
able in all cases. Moreover, it is neces-
sary that each PE be tested by at least t
distinct other PEs. Hakimi and Amin
[1974] showed that for the special case
when no two processors test each other,
these necessary conditions are also suffi-
cient for t-diagnosability. Formally, a
system is t-diagnosable if all faulty PEs
may be uniquely identified, without re-
pair, given the test syndrome, and pro-
vided that the number of faulty PEs does
not exceed t [Preparata et al. 1967].

which some PEs may test themselves.
Huang et al. [1989] characterized se-
quentially t-diagnosable systems.

Somani et al. [1987] provided a gener-
alized characterization theorem that pro-
vides necessary and sufficient conditions
for a particular fault set of any size to be
uniquely diagnosable under symmetric
and asymmetric invalidation fault mod-
els and with or without intermittent
faults. (See Section 3 for descriptions of
symmetric and asymmetric invalidation
fault models and intermittent faults.) As
a result, a particular syndrome in a t-di-
agnosable system with more than t faults
may still be useful if it meets the neces-
sary and sufficient conditions given by
Somani et al. to be uniquely diagnosable.
In other words, t-diagnosability only rep-
resents the performance of a diagnosis
algorithm in the worst case.

The diagnosability problem is to deter-
mine the family of fault sets that a given
testing assignment can diagnose for some
fault model. Sullivan solved the diagnos-
ability problem given the PMC assump-
tions using network fZow [Sullivan 1984].
With his 0(1 E Inl b) algorithm, where E
is the number of tests, it is possible to
calculate the t-diagnosability of a given
testing assignment. Recently, Raghavan
and Tripathi [1991a] improved the effi-
ciency of the t-diagnosability algorithm
to 0(nt 25). They also showed that find-
ing the diagnosability of repairable sys-
tems, i.e., sequential diagnosability, is
co-NP-complete [Raghavan and Tripathi
1991b].

ACM Computmg Surveys, Vol. 25, No 2, .June 1993

The Consensus Problem in Fault-Tolerant Computing “ 177

The diagnosis problem is to determine
a fault set from a given family, for a
given testing assignment, fault model,
and syndrome. Fujiwara and Kinoshita
[1978] showed that it is an NP-complete
problem to find a set of minimal cardi-
nality that, if faulty, could produce a
given syndrome on a graph with arbi-
trary testing assignments. Thus, arbitra-
tion of conflicting test results is also
NP-complete.

Still, work has been done on diagnosis
in restricted situations. For t-diagnosa-
ble systems, Kameda, Toida, and Allan

(KTA) gave an O(tl El) algorithm, where
IEI is the number of tests, in which PEs
are successively supposed to be faulty or
fault free [Kameda et al. 1975]. This sup-
position and the test syndrome implicate
the states of other PEs. If a contradiction
occurs, the algorithm backtracks and
tries again until it finds a consistent fault
set. Recently, Sullivan [1988] improved
the KTA solution to 0(t3 + IEl),which is
the best known solution when t is small
(0(n5/G)) compared with n.

Otherwise, the best solution in terms
of worst-case efficiency is given by Dah-
bura and Masson [1984a]. They pre-
sented an 0(n25) algorithm in which an
undirected graph G is created whose ver-
tices are the processors in the system
and whose edges represent the implied
faulty sets of each PE. The procedure is
as follows: choose a PE, and assume it is
fault free. If this implies by the test syn-
drome that some PEs are faulty, then an
edge should be drawn between the as-
sumed fault-free PE and the implied
faulty PEs. Note that self-loops might be
produced. Repeat this for all the proces-
sors to create G. Then the faulty PEs are
the unique minimum vertex cover set of
G [Deo 1974], and by virtue of the class
of graphs that must include G, these
faulty processors are locatable in polyno-
mial time. Dahbura and Masson gave a
practical variation of their algorithm in
Dahbura and Masson [1984b].

Dahbura et al. [1985a] studied the
practical efficiency of the O(n25, algo-
rithm with respect to the KTA procedure
and found that for small n (n < 30) the

KTA method is almost always more effi-

cient. Even for larger values of n, the
KTA algorithm performs more efficiently
on average than the method given by
Dahbura and Masson [1984a; 1984b]. The
KTA scheme guesses a correct solution
and backtracks if necessary. For an obvi-
ous fault syndrome, little or no back-
tracking is needed. But with the 0(n25)
algorithm, a standard procedure must be
executed for every fault situation, and
herein lies the discrepancy between the
efficiency of the two approaches.

There are many special classes of t-di-
agnosable systems that support more ef-
ficient diagnosis techniques than those
previously mentioned, and this is reason
to believe that an 0(IEl) diagnosis solu-
tion exists for all t-diagnosable systems.
Preparata et al. [1967] defined the Daf
structure in which processor u, tests u
if and only if j – i = 8 m (modulo n~
where m=l,2 ..., t.They showed that
if 8 and n are relatively prime, then the
system is one-step t-diagnosable. Meyer
and Masson [1978], Mallela [1980], and
Chwa and Hakimi [1981bl all gave 0(nt)
solutions to the case of 6 = 1. (Note that
the characterization of t-diagnosable sys-
tems makes nt the minimum value of E
[Hakimi and Amin 1974].) Maheshwari
and Hakimi [1976] described the Z~ sys-
tems; Chwa and Hakimi [1981b] gave the
D(n, to, X) class; and Dahbura et al.

[1985bl defined a group of “self-implicat-
ing” structures, all of which have 0(IE 1)
diagnosis algorithms. Sullivan [1984] de-
veloped an 0(IE 1) algorithm for the most
general class of test graphs among these
mentioned, the t-vertex-connected di-
graphs which are a superset of the self-
implicating structures given by Dahbura
et al. [1985b].

Researchers have refined and detailed
the model given by Preparata et al. [1967]
in search of more realistic assumptions
and more practical solutions. Several of
these extensions are examined later in
the paper.

2.2 The Byzantine Generals Problem

Wensley et al. [1978] were set with the
task of designing a provably reliable air-

ACM Computing Surveys, Vol. 25. No. 2, June 1993

178 “ M. Barborak et al.

craft control system, the result of which
was known as Software Implemented
Fault Tolerance (SIFT). A particular
problem that faced them was that of clock
synchronization in the presence of a sin-
gle faultv clock. In order to guarantee a
~egree o; reliability, only cloc~ character-
istics that could be prouen to be suffi-
ciently improbable could be ignored, and
as a result, nothing was assumed about
the behavior of a faulty clock. The au-
thors m-oved that if all fault-free clocks,
should agree on the same synchronized
time or even an approximate synchro-
nization, then in the presence of a single
faulty clock there would have to be
at least three fault-free clocks to mask
any of the effects of the faulty clock. An
algorithm was given that performed
fault-tolerant synchronization for this
situation. In ge~eral, they reported that
the number of clocks n must be greater
than three times the number of faulty
clocks t,i.e., n > 3t.

This work begun in the SIFT project
was presented with more detail and gen-
erality in Pease et al. [1980]. The prob-
lem becomes one of general ameement
among n processors, ~ of which-could be
faulty and behave in arbitrary manners.
Once again, it was proven that n must
be greater than 3t. In this situation, each
processor holds a secret value that it
wishes to share with the other proces-
sors. The authors assumed that any two
PEs had direct communication across a
network which was (1) not affected bv
the failure of connected processors, (~)
not prone to failure itself, and (3) subject
to negligible delay. The sender of a mes-
sage is identifiable by the receiver. It was
also assumed that the svstero was svn-. .
chronous. Without some sort of synchro-
nization, Fischer et al. [1985] proved that
consensus under this arbitrarv fault.
model is impossible even if only one pro-
cessor crashes during the protocol. Un-
like the original work done by Preparata
et al. [1967] on system diagnosis, de-
scribed in Section 2.1. no central re-
sources are assumed. The goal was to
achieve interactive consistency made up
of the following two conditions:

Consistency. Each fault-free processor
should form an identical vector of
values whose ith element corre-
sponds to the ith processor in the
system.

Meaningfulness. A vector element
corresponding to a fault-free proces-
sor should be the actual secret value
of that processor.

As an example of their solution, con-
sider Figure 3 showing a system of four
processors of which A is faulty as de-
noted by its gray color. A line between
two processors represents a bidirectional
private communication channel. Assume
that each processor wants to share its
secret value, and thus the consensus al-
gorithm given in Pease et al. [1980] is
initiated. Agreement is reached after two
rounds of message passing. In the first
round, the processors exchange their pri-
vate values, e.g., B sends messages to
processors A, C, and D telling them its
value. If a PE fails to receive an expected
message, then it simply assigns a default
value to that message. In the second
round, the PEs exchange all of their in-
formation obtained from the first round,
e.g., B sends a message to A with the
values it received from C and D, to C
with the values it received from A and
D, and to D with the values it received
from A and C. Now every processor has
three numbers for the secret value of
each other’s PE, e.g., B has received val-
ues for A directly from A, via C and via
D. If two of the three values for a particu-
lar PE are the same then it is used;
otherwise a default value is used.

To show that interactive consistency is
reached, first note that if A were fault
free then B, C, and D would all receive
A’s correct value from A as well as from

each other. Thus, interactive consistency
holds. If A were faulty, then B, C, and D
would only be required to agree on the
same value for A, perhaps the default
value. If the faulty processor A sent no
messages then all the fault-free proces-
sors would record the default value, and
the algorithm would be done. For a
fault-free processor, say B without loss

ACM Computing Surveys, Vol 25, No. 2, June 1993

The Consensus Problem in Fault-Tolerant Computing ~ 179

E
.+B

D c

Figure 3. Example of Byzantine agreement.

of generality, to record a value u other
than the default value for A, it must
receive two re~orts of the same value
from a combin~tion of A and the other
two fault-free processors C and D. If
those reports came from C and D then
those processors must have each received
two reports of r.) for A, e.g., C received
the same report of u from A and D.
Then in this case. C and D will record u
for A’s value, and interactive consistency
will have been reached. In the other case,
the reports of v that B received came
from A and one fault-free processor, say
C without loss of generality. Therefore,
D must have received v from B and C
and thus records u for the value of A. B
and C received v from every processor
other than D, and therefore they record
u for the value of A. Once again, interac-
tive consistency is achieved [Pease et al.
1980].

Lamport et al. [1982] then cast the
problem into a situation in which a
Byzantine commanding general, who has
surrounded the enemy with his many
armies each led by a lieutenant general,
wishes to organize a concerted plan of
action, i.e., to attack or to retreat. Unfor-
tunately, the Byzantine corps of generals
has been infiltrated by traitors who want
to influence this plan to the enemy’s ad-
vantage. Despite this, the loyal Byzan-
tine lieutenant generals must all reach
the same conclusion either to attack or to
retreat by sending messages back and
forth among themselves. Moreover, their
conclusion must agree with the com-
manding general’s order if he, as per his-
tory of Byzantium, is loyal. An algorithm
which completes this problem success-
fully is said to reach Byzantine agree-
ment.

The Byzantine generals are replaced
by processing elements in a distributed
computing environment. A single PE,
representing the commanding general,
has a secret value from a set of ordered
values that it wishes to broadcast to ev-
ery other processing element. In the sim-
plest case, this value may be a single
binary digit as Turpin and Coan [1984]
showed that any value representable by
h bits could be agreed upon by perform-
ing k iterations of the consensus algo-
rithm, one iteration for each bit. Faulty
PEs may work in collusion to try to break
the agreement by sending inconsistent
information to different processors. Once
again, it is shown that n > 3 t + 1 must
hold even in the case of only needing to
reach approximate agreement.

The problem is somewhat different
than the one studied in Pease et al. [1980]
in that only one PE is interested in shar-
ing its secret value as opposed to all of
the members sharing their values. By
assigning the role of commanding gen-
eral to every PE and running the result-
ing consensus algorithms concurrently,
the problems become identical. Because
of the similarities of the problems both
will be described as Byzantine Generals
Problems with specification given as
needed.

Unlike the system diagnosis algo-
rithms in which arbitration of conflicting
test results is NP-complete except for
special cases, the Byzantine agreement
procedure can resolve conflicting values
by simply taking a deterministic major-
ity vote of the ordered values received
at each processor. Not only is arbitra-
tion simple, but it is also completely
distributed.

The algorithm for solving the Byzan-
tine Generals Problem with n. PEs in-
volves the same sort of message passing
as in the example and requires t + 1
rounds to complete (Fischer and Lynch
[1982] showed that at least t + 1 rounds
are needed for all deterministic solutions
to the Byzantine Generals Problem)
[Lamport et al. 1982]. Unfortunately, the
message size grows exponentially at each
round (O(nf+ l)). Dolev and Reischuk

ACM Computmg Surveys, Vol 25, No 2, .June 1993

180 ● ill. Barborak et al.

[1985] gave a lower bound of O(nt) on
the number of messages required to reach
agreement, and algorithms have been
given that meet this bound. Work on more
efficient BGP algorithms may be found in
Section 5.2.2.

Lamport et al. [1982] and Dolev [1981;
1982] examined the connectivity require-
ments needed for reaching Byzantine
agreement. To this point, it had been
assumed that the group of processors was
completely connected to allow for private
communication between any pair of pro-
cessors. Lamport et al. gave an algorithm
that works for systems with 3 t-regular

system topologies. (3t-regular implies
that each m-ocessor is connected to 3t
other proce~sors in such a way that there
is a path between any processor p and
the neighbor of any other processor q
such that that path does not pass through
q and that any pair of paths between p
and the neighbor of q have no nodes in
common.) Dolev gave a weaker require-
ment by showing that the connectivity of
the communication graph must be at
least 2 t + 1,He also noted that reducing
connectivity will most likelv result in. .
more rounds required for Byzantine
agreement.

Bvzantine ameement becomes much.
simpler if messages are authenticated or
signed [Pease et al. 1980; Lamport et al.
19821. A message is authenticated it (1)
a message sign-cd by a fault-free PE is
unable to be forged; (2) any corruption of

the message is detectable; and ‘(3) the
signature can be authenticated by any
other PE. Obviously, this limits the capa-
bilities of the faulty processor. In this
situation, there is no limit on the number
of faulty processors that are tolerable,
and the network no longer requires pri-
vate communication channels between
PEs. (Actually, it is precisely private,
point-to-point links that provide the op-
portunity for inconsistency!) Trivially, the
connectivity of the communication graph
must be t + 1. Dolev and Reischuk [1985]
gave an algorithm that uses authenti-
cated messages that requires O(t) rounds
and O(n + tz) messages, which they
prove is a lower bound. In practice, cryp-

tography techniques may be used for au-
thentication if the associated overhead is
not prohibitive (Dolev and Reischuk
[1985] proved that at least O(nt) signa-
tures would be required to reach agree-
ment). In other cases. techniques as.
simple as parity or checksums may pro-
vide the needed reliability depending on
the failure semantics of the m-ocessors.

With a system diagnosis a~gorithm, ev-
ery processor must pass a trial of tests. If
it passes, then its output is assumed to
be correct until the next round of tests,
In this way, every processor may operate
on its own set of jobs, and a consensus on
the results is formed with simple mes-
sage passing as it is assumed that the
environment is fault free until testing
uncovers a fault. With a Byzantine
agreement protocol, every processor is
treated as if it were fault free, but enough
processors are doing the same task that
all faulty results may be masked out.
This masking process is performed via
consensus, and therefore no extra stem.
are required to share the system state.
At a high level, the two solutions are
striving for identical behavior. That is, a
multiprocessor is given a set of inputs,
and despite any failures, it is returning a
correct set of outputs based on its ability
to reach consensus. The difference lies in
the performance of the two algorithms in
achieving this goal as a result of the use
of fault detection in system diagnosis and
fault masking in Byzantine agreement.
The system diagnosis solution should
operate with a high throughput until a
fault is detected, possibly resulting in
an incorrect output prior to detection,
and recovery restores the system per-
formance. On the other hand, the Byz-
antine ameement ~rotocol should
perform ~ith extremely high relia-
bility, and with a consistent, though
lower, throughput until the number
of faulty processors makes it impos-
sible to mask out their results. Thev
are two similar algorithms with di~-
ferent performance characteristics.

In later sections. the evolution and ex-
tensions of the Byzantine agreement pro-
tocols are examined. First, though, the

ACM Computmg Surveys, Vol 25, No 2, June 1993

The Consensus Problem in Fault-Tolerant Computing ● 181

characteristics of a faulty processor are
discussed as these characteristics often
determine the efficiency of the consensus

algorithms.

3. THE FAULTY ELEMENT

Knowing how a processing element fails
is key to making realistic assumptions
and creating workable algorithms to de-
tect and mask the faulty PE. Care-
ful examination of the characteristics of
faulty processors has resulted in the
proposition of many fault models, the ef-
fect of which has been a wide range of
algorithms between and within the areas
of system diagnosis and Byzantine agree-
ment. The relevance of any model de-
pends on the system in question, but in
generaI, the more constraints in the fault
model, the easier it will be to form a
consensus.

3.1 Fault Models and Classes

A fault model must define the behavior of
a PE once it has become faulty. Ideally,
the faulty processing element will behave
with as much predictability and benefi-
cence as a fault-free PE, but generally
this is not the case. For system diagnosis,
the fault model is a description of the
test results given the status of the tester
and the tested; for the Byzantine Gen-
erals Problem, it is a description of
the limitations of a faulty processor. Of
course, there is no reason why one fault
model should be used for system diagno-
sis and another for Byzantine agreement,
but with little exception, this division has
been maintained by researchers.

3.1.1 A Failure in System D\agnosis

Determining the interactions of faulty
PEs is the essence of the consensus prob-
lem. For system diagnosis, these interac-
tions are most pronounced during testing
when test results have different possible
interpretations given the assumptions
about how processors fail. In the PMC
model, a faulty PE performing a test on
another PE will report unreliable results,
and a fault-free PE performing a test on
another PE will always produce correct

test results. This is known as symmetric
invalidation. Figure 4 shows some other
proposed test result models. Barsi,

Grandoni, and Maestrini introduced a
model (known from now on as the BGM
model) in Barsi et al. [1976] in which a
faulty processor would always test faulty
regardless of the condition of the testing
processor. Given a large number of test
stimuli, it may be reasonable to assume
that at least one set of expected and
actual results will mismatch if the tested
PE is faulty, even if the tester is faulty.
This assumption of the BGM model
is known as asymmetric invalidation.
Kreutzer and Hakimi [1983] extended
this assumption by proposing that a
faulty tester would always report a non-
faulty PE as being faulty. The HK
Model 1 and HK Model 2 are called re-
flexive and irrefZexive invalidation, re-
spectively. The result of restricting the
PMC model with the BGM or HK models
is a limitation on the possible syndromes
that can occur, theoretically making it
easier to identify which PEs are actually
faulty.

A diagnostic procedure must take into
account the possible fault classes preva-
lent during the testing process. That is, a
faulty processor may or may not exhibit
a faulty behavior depending on the fault
class of that PE. In system diagnosis,
researchers have examined the effect of
classifying processor faults as transient,
intermittent, or permanent. Results may
be found in Section 5.1.3. Transient faults
are caused by events that come from a
system’s environment and do not imply
that the system is faulty. An intermittent
or soft fault originates from inside the
system when software or hardware is
faulty. By its nature, an intermittent
fault will not occur consistently, which
makes its diagnosis a probabilistic event
over time. One effect of this can be fault
syndromes that are not compatible with
the assumptions made by Preparata et
al. [1967] (discussed in Section 2.1) mak-
ing diagnosis more difficult. Permanent
or hard faults are software or hardware
faults that always produce errors when
they are fully exercised.

ACM Computmg Surveys, Vol. 25, No. 2, June 1993

182 * M. Burborak et al.

PMC Model BGM Model

HK Model 1 HK Model 2

Figure 4. Test validity models. A directed edge
denotes a test by a PE on another PE. A O (1)
denotes a pass (fail). An X indicates that the PE
will produce an unreliable result after performing

the test. Faulty PEs are shaded

It is difficult to determine the differ-
ence between a transient and an inter-
mittent fault by simply observing the
system, A fault caused by external events
may have the same characteristics as one
caused by internal events. The impor-
tance of the distinction is that the tran-
sient fault does not necessarily imply that
the system should be declared faulty al-
though the unstable environment might
warrant a temporary shutdown. On the
other hand, if the fault is intermittent,
the system should be declared faulty un-
til the problem is corrected. If it were
assumed that only transient faults oc-
curred, or that intermittent faults were
very rare, then it would possibly be more
productive to leave the affected PEs in
the processor pool, performing recovery
procedures as necessary, than to remove,
repair, and rejoin them.

3.1.2 A Failure in Byzantine Agreement

Classically, solutions that reach Byzan-
tine agreement make no assumptions
about the characteristics of the faulty
processor. In fact, faulty processor mem-
bers are assumed, in the worst case, to

work in collusion with complete knowl-
edge about the state of the system. This
adversary model is of course the safest
and most conservative approach one
could take to modeling a real system, but
the lack of limitations means a defense
will be ex~ensive. Methods such as mes-.
sage authentication techniques or provid-
ing hardware broadcast mechanisms, i.e.,
a bus, do constrain the faulty PEs by
imposing limits on their computational
power or on their maliciousness. Of
course, the adversary must be con-
strained to some extent. For examrde. the
number of m-ocessors controlled ‘by’ the
adversary is limited so that it c~nnot
simply cause every processor to fail im-
mediately. Chor and Coan [1985] gave
four principal handicaps to the adver-
sary: (1) the adversary may corrupt fewer
than one third of the processors (see Sec-
tion 2.2 for a descri~tion of this limit): (2)
the communicatio~ system is reliable,
and unreliable links must be simulated
by corrupting one of the two communi-
cating processors; (3) the adversary may
not predict random events; and (4) the
adversary must obey the synchrony of
the system. As in system diagnosis, limit-
ing the fault model simplifies the solu-
tion [Lamport et al. 1982].

Defining algorithms that work only for
this adversary model can be limiting and
impractical. Therefore, another classifi-
cation of faults, which may be just as
realistic for a given application, has been
adopted by this community. This taxon-
omy divides processor faults into various
groups with the interesting property that
a stronger class is a subset of a weaker
class. The classes, from strongest to
weakest, are fail-stop faults, crash
faults, on2 ission faults, timzirzg faults, in-

correct computation faults, and Byzan-
tine faults. Figure 5 shows a graphical
representation of the subsetability of
these fault classes.

Fail-Stop Fault: The fault that occurs
when a processor ceases operation
and alerts other processors of this
fault [Schlichting and Schneider
1983].

ACM Computing Surveys, Vol 25, No. 2, June 1993

The Consensus Problem in Fault-Tolerant Computing w 183

Byz.antme

Figure 5. Au ordered fault classification.

Crash Fault: The fault that occurs
when a processor loses its internal
state or halts. For example, a PE
that has had the contents of its in-
struction pipeline corrupted or has
lost all power has suffered a crash
fault.

Omission Fault: The fault that occurs
when a processor fails to meet a
deadline or begin a task [Cristian
et al. 1986]. In particular, a send
omission fault occurs when a proces-
sor fails to send a required message
on time or at all, and a receive omis-
sion fault occurs when a processor
fails to receive a required message
and behaves as if it had not arrived.

Timing Fault: The fault that occurs
when a processor completes a task
either before or after its specified
time frame or never [Cristian et al.
1986]. This is sometimes called a
performance fault.

Incorrect Computation Fault: The
fault that occurs when a processor
fails to produce the correct result
in response to the correct inputs
[Laranjeira et al. 1991].

Authenticated Byzantine Fault: An
arbitrary or malicious fault, such as
when one processor sends differing
messages during a broadcast to its
neighbors, that cannot imperceptibly
alter an authenticated message
[Lamport et al. 1982].

Byzantine Fault: Every fault possible
in the system model [Lamport et al.
1982]. This fault class can be consid-
ered the universal fault set.

The incorrect computation fault class
is a superset of the crash, omission, and
timing fault classes and a subset of
Byzantine failures. The first characteris-
tic is true because a miscalculation may
take place in time or space. Since the

ACM Computing Surveys, Vol. 25, No. 2, June 1993

184 w M. Barborak et al.

fault is consistent to all outside ob-
servers, though, the incorrect computa-
tion class is stricter than Byzantine faults
[Laranjeira et al. 1991].

The most basic fault classes, crash,
omission, and timing failures, are prob-
lems that occ~m- in the time domain and
are problems that are detectable in the
time domain. This is in contrast to the
more common fault classes mentioned in
the m-evious section that stress error de-
tection in the data domain. As a result,
both models may be applied concurrently
for a more complete approximation of the
behavior of a faulty PE. The effects of
time domain testing may be seen in Sec-
tion 5.1.7, which describes a set of pro-
cessor membership protocols that test the
fault-free status of a processor solely in
the time domain.

3.2 Fault Impact

The impact of a fault is the functionality
reduction caused by that fault. A fault in
one module of a system may or may not
affect the operation of other modules. The
impact of a fault on a PE will determine
both if a particular test on that PE will
declare it faulty and if that PE can reli-
ably perform a particular test. After a
fault, a PE may stop communicating,
start sending corrupted data, slow down
its computations, stop performing some
functions, begin performing functions in-
correctly, or some combination of the
above, that may or may not affect its
ability to perform the tasks assigned to
it.

Defining the possible impacts of a fault
within the confines of its fault model is
desirable as a diagnosis or agreement
algorithm can take advantage of the de-
pendent nature of these faults. That is,
the concurrence of multiple failures could
be diagnosed as a single fault which is
advantageous when the number of faults
must be bounded. Conversely, it may be
the case that the concurrence of two par-
ticular elements failing happens with
such a small probability that the diagno-
sis of one as faulty implies the other one
is fault-free. The next section discusses
some work done in this area. For a study

of fault impact in parallel-processor sys-
tems refer to Menezes et al. [1992].

4. THE TEST

After the faulty processing element has
been characterized, the next step is to
derive a test that will uncover it. This is
the case for system diagnosis algorithms,
and various techniques are discussed in
this section. Byzantine agreement does
not intentionally diagnose elements and,
therefore, is not restricted by the limita-
tions of a test. Nonetheless, some conclu-
sions about the status of a processor may
be drawn from its actions during Byzan-
tine agreement as discussed in Section
5.2.6.

The nature of tests in system diagnosis
is a major point of contention in practical
systems. Typically, processor A tests pro-
cessor B by giving it certain inputs and
comparing the resulting outputs with
some set of correct responses. A quick
and complete test is desired because
without one, a faulty PE could go undiag-
nosed for an unacceptable period of time,
or forever, and cause unrecoverable dam-
age to the system state. It is obvious that
a test cannot be allowed to tie up a nor-
mally busy PE with diagnostic tasks, nor
can it overload a congested network, Yet,
for a highly complex system, a test could
take hours or days and still not produce
accurate results. This section looks at the
test and the means of making it efficient.

4.1 Self-Testing

Testing may be performed by each pro-
cessing element on itself in a series of
self-tests. Thus, a direct test of’ processor
A on B becomes a simple request for the
status of B to which the self-checking
mechanisms of B will respond. In this
case, all free time at B may be spent
testing without using the network. Kuhl
and Reddy [1980a] proposed a hierarchi-
cal system of self-tests that permit a PE
to deem itself faulty or fault free, includ-
ing varying degrees of self-diagnosabil-
ity, by means of hardware or software
checkers, watchdog timers, error-detect-
ing codes, or redundancy with voting.

ACM Computing Surveys, Vol 25, No 2, June 1993

The Consensus Problem in Fault-Tolerant Computing ● 185

4.2 Group Testing

A test may only be able to determine
whether a group of PEs is faulty or fault
free, and reaching a single PE resolution
might require multiple tests. Also, the
execution of a test may require multiple
units where failure of one of these units
would invalidate the result [Kime 1970;
Russell and Kime 1975a; l!375b]. If many
independent modules are required to per-
form a test, then the system is described
as Multiple Invalidations Per Test
(MIPT) as opposed to Single Invalidation
Per Test (SIPT) which is the case in the
PMC model. If a test has only multiple-
module resolution, i.e., the test cannot
pinpoint a fault to a single module, then
the model is referred to as Multiple Units
Per Test (MUPT) as opposed to Single
Unit Per Test (SUPT) which again is the
case in the PMC model. The tests in a
MIPT or MUPT environment may be
simpler to write and quicker to execute,
because fewer demands are made on
them, and depending on the impact of a
fault, the test might be sufficient. When
tests fail, a table may be examined to
determine what specific faults or group
of faults could cause the test set to fail. A
table also could be used to schedule the
next round of tests to locate or avoid
faulty units. Maheshwari and Hakimi
[1976] characterized MIPT/MUPT sys-
tems while Holt and Smith [1981] exam-
ined their diagnosability and diagnosis.

A somewhat different model is exam-
ined by Gupta and Ramakrishnan [1987].
Here a processor is tested by a number of

other processors, each able to completely
test some portion of the functions of the
tested processor. Therefore, to completely
test a PE, the test results of many pro-
cessors must be combined. Unlike the
MIPT model described above, though, a
single faulty tester does not invalidate
the test results of the other testers. Such
systems were characterized by the au-
thors.

4.3 Comparison Testing

Typically, a test consists of performing
an action and comparing the result of
that action with that which is expected.

If the result disagrees with the expected

answer, tl.en an error has occurred, The
problem with this approach is that typi-
cal electronic units are too complex to
have such a test be able to determine
unambiguously in a reasonable amount
of time whether they are faulty or fault
free.

A practical method of detecting faulty
components is comparison. Determina-
tion of the faulty or fault-free status of
elements in the system is made by as-
signing a task to a pair of elements and
comparing the results. When comparing
results from two PEs one can detect, but
not diagnose, a failure. When comparing
results from more than two PEs, one can
diagnose up to [n/2] – 1 processors us-
ing NMR techniques. If the failure rate of
two PEs is low, then it is not expected
that they will fail at the same time, nor
is it necessarily expected that they will
fail in the same manner. Therefore, two
similar PEs performing identical, deter-
ministic tasks should produce identical
results unless one, or even both, of them
has failed. The comparison method is not
foolproof, though. An intermittently
faulty PE could produce correct results
for certain test tasks, or two faulty PEs
could report the same incorrect results.
Nonetheless, the comparison technique
promises high fault coverage with detec-
tion in a short amount of time [Rangara-
jan et al. 1990],

Whereas the tests of the PMC model
are performed in rounds between system
tasks, comparison tests can occur in con-
junction with productive tasks. A fault is
detected when it happens and allows
maximum fault containment much in the
same way as Byzantine agreement algo-
rithms which also use a form of compari-
son. The comparison of results can be
implemented by creating and comparing
signatures, such as checksums or cyclic
redundancy codes, of the results.

Malek [1980] introduced the compari-
son approach in the context of system

diagnosis and presented a method to as-

sign comparison edges in the system

graph. A syndrome of comparison results
is created by labeling an edge with a zero
if it connects two PEs that agree and

ACM Computing Surveys, Vol. 25, No. 2, June 1993

186 “ M. Barborak et al.

with a one if it connects two that dis-
agree. Malek assumed that faulty
processors would never produce identical
results. The resulting syndrome is diag-
nosed by a centralized supervisor as if it
were the result of a PMC-modeled sys-
tem. Chwa and Hakimi [1981a] proposed
a similar comparison approach indepen-
dently with the exception that faulty pro-
cessors could possibly produce the same
results. Maeng and Malek [1981]
broached the problem of decentralizing
the arbitration of comparisons by consid-
ering the use of a third processor to com-
pare the results of two other processors.
The Maeng/Malek fault model is given
in Table 1 where a O means the proces-
sors agreed; a 1 implies that they did not;
and an X is an unpredictable result.

As an example of the original compari-
son model given in Malek [1980], con-
sider the four-processor system of Figure
6 in which A is faulty. (Note that, in this
case, at most one PE can be faulty for
diagnosis without repair.) Each PE is
performing the same task for comparison
purposes. When a processor completes its
copy of the task, the result is broadcast
to the other processors. After all tasks
are completed, each processor will have
four values including its own. For exam-
ple, say that each has received values 10,
24, 24, 24 from A, B, C, and D respec-
tively. The resulting syndrome, which
each fault-free PE can construct, is shown
in Figure 6. The next step is to analyze
this syndrome, for example, using the
0(nz 5) algorithm of Dahbura and Mas-
son [1984a] described in Section 2.1. A
graph G is created with the same proces-
sors as in the system. Assuming A is
fault free implies that B, C, and D are
faulty, so the edges (A, B), (A, C), and
(A, D) are added. Assuming B, C, and D
are fault free adds no new edges to the
system. Then, the minimum vertex cover
set of G is A since all edges have one
end at A. Therefore, A is the faulty pro-
cessor.

Ammann and Dal Cin [1981] examined
the necessary conditions for a compari-
son-based system to be t-diagnosable.
They showed that the minimum degree

Figure 6. An example of comparison testing and
diagnosis.

Table 1. Fault Model for Maeng / Malek
Comparisons

Comparator Compared 1 Compared 2 Result

fault free
fault free
fault free
fault free

faulty

faulty
faulty

faulty

fault free
fault free

faulty
faulty

fault free

fault free
faulty

faulty

fault free O
faulty 1

fault free 1
faulty 1

fault free X

faulty x
fault free X

faulty x

of the testing graph must be greater than
or equal to t (implying that the number
of tests must be greater than or equal to
[nt/2]) and gave conditions under which
a processor could have this minimal de-
gree. They also showed that d~ > t + 1,
where dG is the minimum degree of a
processor in the testing graph, is suffi-
cient for a system to be t-diagnosable. In
general, finding the complete and correct
set of faulty processors using the compar-
ison model is NP-hard [Blough and Pelt
1992], but if the system is t-diagnosable,
the problem is solvable in polynomial
time. Ammann and Dal Cin gave an
0(n z) sequential algorithm for a subset
of the t-diagnosable systems as well as a
parallel algorithm for the diagnosis of
tree topology multiprocessors [Ammann
and Dal Cin 1981; Dal Cin 1982]. Sen-
gupta and Dahbura [1989] completed the
characterization of comparison-based, t-
diagnosable systems and gave a polyno-
mial algorithm for the diagnosis of all
t-diagnosable systems under the

ACM Computing Surveys, Vol. 25, No 2, June 1993

The Consensus Problem in Fault-Tolerant Computing “ 187

Maeng/Malek model. Blough and Pelt
[1992] gave efficient algorithms for diag-
nosis when the testing assignment is a

bipartite graph.

In the data domain, i.e., regardless of
the timing of outputs, the only way a
processor may be faulty is if it produces
an incorrect output. Therefore, regard-

less of the fault model employed, com-

parison testing can uncover faulty or

suspicious processors, and diagnosis of

Byzantine-failing PEs is possible. In fact,

a close examination of the Byzantine

agreement algorithm discussed in Sec-

tion 2.2 reveals that comparison of re-

sults is the mechanism used to identify

the correct result. Thus the tools for diag-

nosis based on comparison testing are

already in place. Their exploitation is

more carefully discussed in Section 5.2.6.

4.4 Time Domain Testing

An alternative fault classification largely
based in the time domain was shown in

Fig-are 5. This approach leads to the test-

ing of processors with respect to time. If

a PE fails to complete a task, or send

or receive a message within some time

frame, then an error has occurred. Tim-

ing faults can be detected with simple

tests using timestamps and time-outs in

the case of a global set of synchronized

clocks. Moreover, this time domain fault

model is orthogonal to the data domain

techniques previously described. Thus

timing errors may go undetected in a

data domain fault model while data er-

rors may go undetected in a time domain

fault model. The processor membership
algorithms discussed in Section 5.1.7 are
largely based on time domain testing.

Most early system diagnosis research
did not concentrate on the limitations of
the test. Instead, it was assumed that a
test was available with whatever re-
quirements were needed. In the next sec-
tion, though, much work is presented that
weakens the classic assumption of 100%
coverage. The explicit details of the test
are ignored, yet it is understood that any
implementation of the test will be imper-
fect.

5. SPECIFYING THE

CONSENSUS PROBLEM

Research on the consensus problem has
focused on specification. That is, the as-
sumptions associated with the problem
have been strengthened or weakened de-
pendent on the specific system which is
to support the consensus protocol. This
section looks at extensions given to the
basic system diagnosis model, the PMC
model, and to the Byzantine agreement
algorithm given by Lamport et al. [1982].

5.1 Extensions to the PMC Model

The original system diagnosis model and
diagnosis goals set forth by Preparata
et al. [1967] made a number of stringent
demands on the underlying hardware. As
a result, system-level diagnosis has had
a limited impact on fault-tolerant system
design. Dahbura [1988] gave several sim-
plifying assumptions that have guided
much research in the area and which
need to be examined to change this situa-
tion.

The existence of tests. Much system-
level diagnosis research has as-
sumed the ability of processor A to
test processor B completely, i.e., with
10070 coverage. In Section 4, the
comparison approach was presented
as a solution, but this still does not
assure a complete test. Therefore,
probabilistic techniques have been
developed to cope with imperfect
tests [Blount 1977; Dahbura et al.
1987; Blough et al. 1988].

Permanently faulty PEs. The only
fault class Preparata et al. [1967]
considered was the permanent-fault
class, excluding the possibility of in-
termittent or transient faults. It was
assumed that a faulty PE performed
all assigned jobs incorrectly and that
a faulty or fault-free PE would main-
tain its status during all testing
procedures. To weaken these as-
sumptions, work has been done for
systems which suffer from intermit-
tent faults [Mallela and Masson

ACM Computing Surveys, Vol 25, No. 2, June 1993

188 “ M. Barborak et al

1978; 1980; Yang and Masson 1985b;
1987].

The number of faults is bounded.
Preparata et al. [1967] proved for
their model that the number of PEs
in the system must be greater than
or equal to twice the number of faulty
PEs plus one, i.e., n > 2t + 1. This
bound has been used in the charac-
terization and diagnosis of these sys-
tems, and the result has been costly
diagnosis strategies, In practice,
fault-tolerant systems handle at
most one fault if the time to repair is
much shorter than the time between
failures. On the other hand, Wafer-
Scale Integration, which is the place-
ment of many processors on a single
wafer, typically has a poor yield
leading to 2 t + 1> n. The solution
to the problem of either overestimat-
ing or underestimating the number
of faults in the diagnosis algorithm
has been to make no assumptions
about the number of faults. This
might mean that the fault will not be
correctly identified, but a sufficiently
low probability of this happening can
make these algorithms satisfactory.

Test scheduling. Often, diagnosis is
considered the only task of the sys-
tem, and the effect of operating in
conjunction with other tasks is ig-
nored. But in fact, it is desirable that
test scheduling minimally impact the
throughput of the system without di-
agnosis. One way of doing this is to
use the spare capacity, or temporar-
ily unused resources, of the multi-
processor system to perform testing
and analysis [Saheban et al. 1979].
For moderately loaded systems, a
sufficient percentage of jobs may be
duplicated in the spare capacity to
provide a basis for fault detection
and diagnosis with virtually no
degradation to system response time
[Dahbura et al. 1989]. Rouing diag-
nosis introduced by Nair et al. [1978]
uses a time-varying subset of PEs to
perform the system tasks while the
other PEs conduct testing and diag-

nosis. Concurrent- and adaptive-di-
agnosis techniques strive to reduce
the effect of testing and analysis on
system performance.

Worst-case approach to diagnosis.
Typically, fault diagnosis algorithms
are designed to identify the fault set
under all circumstances including
such improbable cases as faulty PEs
colluding to diagnose fault-free PEs
as faulty and vice versa. More effi-
cient algorithms can be developed if
these situations are ignored or are
given a low priority for identification
in the diagnosis strategy. The effect
of this was discussed in Section 2.1
and studied in Dahbura et al.
[1985a].

Hardware faults. System diagnosis
has been intended primarily for
treating hardware faults as opposed
to design flaws in software or opera-
tor errors. The redundancy manage-
ment aspects of system diagnosis are
surely applicable, but the hardware/
software analogy has not been car-
ried through fully. For example, the
implications of testing a piece of
software or user inputs need exam-
ination. It is uncertain whether
hardware or software faults will pre-
dominate future multiprocessor
systems, and it is uncertain what
role system diagnosis will play in
the latter situation.

Centralized diagnosis. Often it has
been assumed that an ultrareliable
supervising arbiter is available to
analyze test syndromes and dissemi-
nate diagnostic information. The im-
plementation of such a device would
place a bottleneck on performance,
reduce availability, and impair ex-
pandability. For these reasons,
distributed diagnosis has been intro-
duced and studied [Nair 1978; Kuhl
and Reddy 1980a; 1981; Hosseini et
al. 1985].

The relaxation of these simplifying as-
sumptions is the focus of the next several
sections. Together they represent the
current status of system-level diagnosis

ACM Computing Surveys, Vol. 25, No. 2, June 1993

The Consensus Problem in Fault-Tolerant Computing s 189

and, in many ways, a new approach to

fault-tolerant system design.

5.1.1 Set Diagnosis

Friedman [1975] proposed that replacing
a set of processors, including some that
could be fault free, might be acceptable
when single-processor diagnosability is
not practical, He called a system t/s-di-
agnosable if the set of at most t faulty
PEs is identifiable to within a set of at

most s PEs. Karunanithi and Friedman

[1977] looked at the effect of t/s-diagno-
sability on the diagnosis of certain net-

work topologies.
A special and important case of set

diagnosis is tl/tl-diagnosis that was in-
troduced in Friedman [1975] and charac-
terized by Chwa and Hakimi [1981b]. In
such a system, even if at most tl PEs are

faulty, diagnosis can locate a set of at

most t~ PEs that includes all of the faulty
processors. A system might be t-diagno-
sable and tl/tl-diagnosable with t s tl.
If ~ < t,where f is the number of faults,
then the fault set is obviously identifi-
able. If t < f < tl then Yang et al. [1986]
showed that all the faulty PEs except at

most one could be correctly identified and
isolated in a set of cardinality less than
or equal to tl,which will contain, at

most, one fault-free element. In addition,
the status of each PE in the set can be

determined to be either “faulty” or “un-
known.” The importance of this class of

set diagnosis was shown by Kavianpour
and Friedman [1978] who noted that if
n > tl,then only n[(tl + 1)/2] tests are
needed to construct a tl/tl-diagnosable
system. This is almost half the number of
tests required by a t-diagnosable system
where t = tl [Hakimi and Amin 1974].

Using conventional testing techniques,
Yang et al. [1986] generalized the 0(n25)
algorithm of Dahbura and Masson
[1984a] to achieve the diagnosis de-
scribed for these tl/tl-diagnosable sys-
tems. Using the comparison approach,
Yang and Masson [1986] generalized the
backtracking algorithm of Chwa and
Hakimi [1981a], similar to the KTA
method given in Section 2.1, for 0(1 Ill)

diagnosis where IE I is the number of tests

that was given above.

Kavianpour and Friedman [1978], and
later Chwa and Hakimi [1981b], exam-

ined the D(n, to, X) class of systems
which are tl/tl-diagnosable with tl pos-
sibly much greater than to.(A system is
a D(rz, to, X) system if for a positive
integer to, to< l(n – 1)/2], and a set

of integers X, 15 xl < Xz < . . . < x~,
< [(n — 1)/2], an edge exists between

PEs i and j if and only if (i – j) (modulo
n) = X.) Maxemchuk and Dahbura [1986]

showed that the optimal design of such
systems reaches tl/tl-diagnosability
where tl= 2t0 – 1.

Another special case of t/s-diagnosa-
bility is t/(n – l)-diagnosability which
guarantees the location of one fault-free
processor. This processor may be used to
reliably test other PEs, as in adaptive
testing (see Section 5.1.2), or it may be

used to select the correct result from n

PEs performing the same task. Xu [1991]
examined t\(n – l)-diagnosability and
its use in the diagnosis and repair of

constant-degree systems as well as soft-

ware fault tolerance. Optimal configura-

tions for these systems were presented.

5.1.2 Adaptive Testing

Classically, the testing assignment for a
system was determined prior to the exe-

cution of the diagnosis algorithm, and

was left unchanged during execution.

Nakajima [1981] saw that this was re-

strictive in that tests could be adapted as

information was uncovered to optimize

the speed and accuracy of the diagnostic

process. He proposed that once a fault-

free PE was located, it could be used to

reliably test the other PEs in the system

as long as it remained fault free. Assum-

ing this approach, Blecher [1983] showed

that, in the worst case, at least n + t – 1
tests are required to identify all t faulty

units for n > 3 which is many fewer tests

than the optimal nt tests required for
fixed testing assignments. As an exam-

ple, the adaptive testing algorithm given
by Hakimi and Nakajima [1984] first uses

testing with repair to locate a fault-free

ACM Computing Surveys, Vol. 25, No. 2, June 1993

190 “ iW. Barborak et al.

processor. This processor then reliably
tests (given that the processor does not
subsequently fail) all other PEs in the

system for efficient diagnosis. The paral-

lelization of this basic algorithm, via

broadcast operations, can diagnose a sys-

tem in o(lo,g[.,,lt) rounds with O(n)
tests [Schmeichel et al. 1988].

Pelt [1992] presented a number of al-
gorithms based on comparison testing to
perform t-fault detection, sequential t-
fault diagnosis, and one-step t-fault diag-
nosis in both adaptive and nonadaptive

manners. In every case, the nonadaptive

algorithm required more tests than the

adaptive case. (In Section 7.3, implemen-

tations of adaptive testing schemes

at Carnegie Mellon University are de-

scribed.)

5.1.3 Intermittent Faults

Mallela and Masson [1978] were the first
to include intermittent faults in their

system model. This fault class adds com-

plexity to the PMC model because it can

no longer be assumed that a fault-free

tester will accurately judge the condition

of the PE that it is testing. So while all

PEs that give faulty outputs are indeed

faulty, other defective PEs might go un-

diagnosed, thus leaving the diagnosis in-
complete. The solution is repeated testing
until a test overlaps the occurrence of an

intermittent fault. After a test fails,

though, it no longer needs to be repeated,

as the fault has been uncovered. After

every round of testing, a subsyndrome is
produced. This subsyndrome is a subset
of the actual syndrome which is the test-
ing result that would be produced if ev-

ery faulty E’E were permanently faulty.

Thus, a syndrome is pf-compatible or
permanent-fault compatible as it could
be produced by a system suffering only
from permanent faults. A problem arises

when a subsyndrome not equal to the

system syndrome is also pf-compatible

because its analysis could lead to an in-

correct diagnosis of the system. Mallela

and Masson characterized t,-diagnosa ble
systems, where t,is the maximum num-

ber of intermittently faulty PEs. These

systems will never produce a pf-compati-

ble subsyndrome leading to an incorrect

diagnosis. Thus, diagnosis is correct

whenever a subsyndrome is pf-compati-

ble, although it may not be complete, i.e.,

a faulty PE might go undiagnosed, but a

fault-free PE will never be labeled faulty.

They found that these systems have sig-

nificantly more restrictive requirements
than systems that are only t-diagnosable
for permanent faults.

The t,-diagnosability measure fails to
account for PEs that exhibit hard-failure
semantics and that omission could ham-
per analysis. This hybrid-fault situation
is modeled by a t~/t~,-diagnosable sys-
tem in which at most th PEs are faulty,
and of these at most t~, are intermit-
tently faulty [Mallela and Masson 1980].
Hybrid-fault systems were detailed fur-
ther as th/tJLL/th,-diagnosable if all the
permanent faults in the corresponding
th/th,-diagnosable system could be lo-
cated [Yang and Masson 1985 b]. Unfor-
tunately, a system of this type requires a
large number of testing assignments, but
a procedure has been given for designing

th /th,/th,-diagnosable systems [Kohda
and Abiru 1988]. tjl/t,LL/r-diagnosability
was introduced as the master diagnos-
ability measure, because it includes all
the previous hybrid-fault diagnosability
measures as special cases [Yang and
Masson 1987]. Two types of intermittent
failures are identified: almost hard fail-
ures that occur with great enough fre-
quency that a few tests will uncover
them, and very soft failures that are elu-
sive to detection. Then tk and th, are the
same values as previously defined, and ~
is the bound on very soft failures. Up to
this point, only systems with reliable
communication links were considered.
That is, the models assumed that faults
only occurred within the PEs. Therefore,
Yang and Masson [1988a] introduced an-
other diagnosability measure known as

(t ~/t~ ,-unit; cr-link)-diagnosability which

describes a th/th,-diagnosable system in
which as many as u test outcomes may
be altered by unreliable communication
links. The respective authors that in-
troduced each of those diagnosability

ACM Computing Surveys, Vol. 25, No 2, .June 1993

The Consensus Problem in Fault-Tolerant Computing ● 191

measures also have characterized the
systems described by these measures.

The set of all test syndromes produced

by a system that suffers from intermit-
tent faults is a superset of all test syn-
dromes possible in the same system suf-
fering only from permanent faults. That
is, some syndromes will not be pf-com-
patible. The implication of this is that
previous diagnostic algorithms are no
longer directly applicable. Dahbura and
Masson [1983a] introduced the idea of
greedy diagnosis to identify faulty pro-
cessors from a pf-incompatible syndrome.
They also applied this approach to com-
parison-based systems in Dahbura and
Masson [1983b]. The algorithm requires
that a bound be put on the number of
soft-failing PEs and that the number
of simultaneously failing PEs also be
bounded. Unfortunately, in the most gen-
eral case they showed that the problem is
NP-complete. Therefore, Kozlowski and
Krawczyk [1991] gave necessary and suf-
ficient conditions for the comparison
assignments to achieve correct and com-
plete diagnosis and gave an O(n IEl) diag-
nosis algorithm for such systems.

Yang and Masson [1985a] reported an
algorithm that correctly identifies all
faulty PEs if the syndrome is pf-compati-
ble and at least one faulty PE in many
cases where the comparison syndrome is
not pf-compatible with 0(IE 1) efficiency
(1El is the number of tests required).

5.1.4 Probabilistic Diagnosis

The processing elements of a system are
not necessarily homogeneous nor operat-
ing under similar conditions. Therefore,
the probability that one PE will fail in a
given amount of time is not equal to the
same failure probability of another PE.
Considering this in the fault model, we
can make diagnosis more practical and
more efficient. Techniques which assign
probabilities to the correctness of a test
or to the reliability of a processing ele-
ment fall into the area of probabilistic
diagnosis. It should be noted that an in-
termittent fault could be modeled by a
test with imperfect detection characteris-

tics or by assigning a reliability to the
faulty PE that corresponds to the proba-
bility that a test will detect the intermit-
tently faulty PE. Thus, probabilistic di-
agnosis is well suited for systems that
experience intermittent faults.

Maheshwari and Hakimi [1976] as-
signed a reliability to each PE in the
network. The reliability is simply the
probability of a fault occurring in a given
PE. They defined a probabilistically t-di-

agnosable (p-t-diagnosable) system as
having, for every allowable syndrome, a
unique, consistent fault set whose proba-
bility of occurrence is greater than p.
They gave necessary and sufficient condi-
tions for these systems, and Dahbura
[1986] generalized the 0(n25, diagnosis
algorithm of Dahbura and Masson
[1984a] (see Section 2.1) for use with p-
t-diagnosable networks. Sullivan [1987]
gave a polynomial algorithm (O(n~))

which approximates the p-t-diagnosabil-
ity of a testing graph to within an addi-
tive factor. He showed that finding the
exact diagnosability is NP-hard.

Blount [1977] took a different ap-
proach to probabilistic diagnosis by as-

signing a probability of correctness to
each test rather than to the PEs them-
selves. Unlike Preparata et al. [19671 who
assumed that tests had perfect coverage,
Blount assigned a probability to each test,
based on the conditions of the tester and
the tested PEs, to specify the coverage.
Procedures were given for determining
the probability of correct diagnosis for a
particular fault set, and for the entire
system. The author extended this model
to include the syndrome analysis process.
That is, Blount realized that the syn-
drome-analyzing supervisor in the PMC
model would most likely be implemented
by a “committee” of processors drawn
from the pool of processors being diag-
nosed. Obviously, under this model, there
would be a probability that committee
members would be faulty resulting in an
incorrect syndrome analysis. Blount
[1978] studied the probability of correct
diagnosis given these assumptions.

The general problem is to diagnose a
system that suffers from intermittent

ACM Computing Surveys, Vol. 25, No 2, June 1993

192 “ M. Barborak et al.

failures and that has tests with imper-
fect coverage. Dahbura et al. [1987] were
the first to examine this problem using
probabilistic diagnosis under the com-
parison approach. They gave a simple
diagnosis algorithm that diagnoses the
system correctly with an extremely high
probability with 0(nz) operations. This
system model avoided many of the pit-
falls introduced by Preparata et al.

[1967], including the need for complete
tests, the permanent nature of faults,
off-line testing, and an upper bound on
the number of simultaneously faulty PEs.
Using a similar model, Pelt [1991] and
Blough and Pelt [1992] proved that find-
ing a given testing assignment’s diag-

nosability and performing optimal
probabilistic diagnosis, i.e., finding
the most likely set of faulty proces-
sors, are NP-hard problems. They also
showed that the deterministic compar-
ison model given by Malek [1980] is a
limit of their probabilistic model and
that diagnosis for the Malek model in
arbitrary systems is also NP-hard.

Blough et al, [1988] reexamined the
problem based on the more conventional
approach of one PE testing another. They
assigned a reliability to the processing
elements and a coverage probability to
the tests. It was shown that to perform
correct diagnosis of 0(n) faults with a
probability approaching one is impossible
with fewer than 0(n log n) tests, where
n is the number of PEs in the system.
The authors gave an O(1 E 1) solution
where IEl is the number of tests and is at
least co(n)n log n where co(n) ap-
proaches infinity as n approaches infin-
ity. In Blough et al. [1992a] the number
of required tests was improved to 0(n

log n).

Blough et al. [1989] continued their
work to reduce the number of required
tests which in turn reduces the need for
physical communication paths thus al-
lowing diagnosis for a large number of
faults in such systems as hypercubes. It
was shown that their probabilistic diag-
nosis algorithm is almost surely correct
for a class of regular systems that in-
cludes the hypercube while, in general,

regular systems of degree O(log n) are
not diagnosable with high probability.
Scheinerman 119871 examined a similar
system model, but an error invalidates
his lower bound on the number of re-
quired tests, Blough et al. [1989] showed
that for a class of systems in which a set
of mocessors acts as testers for the entire
sy~tem, diagnosis would be correct with
probability approaching one as long as
the number of tests mew iust faster than

“

71. They extended t~eir results showing
that diagnosis could be correct with a

m-obabilitv arbitrarily close to one for.
systems performing a linear number of
tests [Blough et al. 1992 b]. They also
proved that this is the best possible re-
sult since a sublinear number of tests
must result in a probability of correct
diagnosis approaching zero.

Fussell and Rangarajan [1989] and
Rangarajan and Fussell [1988] used
probabilistic diagnosis in a distributed
environment to assure. with high tmoba-
bility, correct diagnosis in a sys~ern with
arbitrary connectivity. This result is sim-
ilar to that of Blou~h et al. [19891 who
showed that correc< diagnosis cou-ld be
attained in systems with constant con-
nectivity. (Berman and Pelt [1990] used
the m-obabilistic model of Blouszh et al. in.
a distributed environment.) Using their
diagnosis scheme, which requires only
two testers ~er mocessor. Fussell and
Rangaraj an s’how~d that reliable diagno-
sis was available for such minimal net-
works as rings.

Fussell and Rangarajan [1989] accom-
plished the reliable diagnosis of sparsely
connected networks by comparing proces-
sor results across several tasks. They ex-
ploited the fact that a failed processor
might not cause an error in every task it
completes, and therefore, its results may
still be used to test other m-ocessors.
Since many tests are perform~d on each
PE, many syndromes are created, none
of which must match any of the other
syndromes. This multiple-syndrome di-
agnosis will be correct with a very high
probability if the number of tests, not
unique testing processors, of each pro-
cessor grows as log n, Therefore, their

ACM Computing Surveys, Vol. 25, No 2, June 1993

The Consensus Problem in Fault-Tolerant Computing * 193

technique is applicable to arbitrarily con-
nected networks. A more efficient algo-
rithm was given by Lee and Shin [1990].
Similar work based on directed testing
and diagnosis with repair has given
equally promising results for low, con-
stant-degree systems [Blough and Pelt
1990].

Realizing that the testing scheme
should not be limited by the PE with the
lowest connectivity in the system, Ran-
garajan and Fussell [1991] adapted their
algorithm to tailor itself to any system
topology. Previously, the number of
testers was set at two for each PE, but in
fact the number of testers is variable.
The method they gave requires only that
the product of the number of tests con-
ducted on each processor by one of its
testers and the number of such testers
grows as O(log n). Thus, the diagnosis
algorithm may be adjusted at each PE as
desired and limited only by the network
topology at that PE.

5.1.5 Distributed Diagnosis

One drawback of the PMC model is that
a centralized arbiter must gather and
analyze the global test syndrome to diag-
nose the system. This dedicated process-
ing unit or specialized hardware must
not onlv be ultrareliable, but it must also
have fiaranteed communication links to
all the members of the network. This
function is difficult and ex~ensive to im-
plement in a truly distribu~ed system and
is a weak spot in a fault-tolerant design.
Therefore, methods for distributed diag-
nosis have been developed in which every
processor decides independently what is
the fault-free ~omlation. Thus, as lomz. .
as the bounds for diagnosability’ are me~
the hardware to perform the diagnosis is
available.

Of course, one problem with removing
the centralized supervisor is the relaying
of the diagnostic information to the sys-
tem user. If the user is unable to test a
processor, then it is a problem to decide
from which PE to take the system diag-
nosis information as any of them might
be faulty. Kreutzer and Hakimi [1988]

discussed this quandary. Basically, they
sought the minimal connections required
between a centralized observer. that is.
the user, and a t-diagnosable system in
which every fault-free processor has the
correct diagnosis of the system. They
found that if authenticated messages, or
message passing, were available, then
onlv t + 1 PEs needed to be aueried to
lea~n the correct diagnosis. W~thout au-
thenticated messages, 2 t + 1 PEs needed
to be probed.

Nair [1978] provided the first formula-
tion of the system diagnosis problem in a
distributed environment. His concept was
a roving-diagnosis approach in which
only a subset of the system’s PEs per-
forms diagnosis at any time, creating an
entire system diagnosis as the subset
“roves” over the entire set of PEs.

Smith [1979] gave simple system diag-
nosis algorithms that do not use a cen-
tralized observer and that can be amdied
regardless of the system structur~.” But
he did not describe the manner in which
the test data would be distributed. nor
did he couch his discussion in a’ dis-
tributed-system framework.

Ciompi et al. [1981] saw the problem
as one of distributing the centralized
analysis of the syndrome. In their
MuTeam approach, testing was carried
out as required for t-diagnosability, but
once this was completed, results were not
sent to a centralized observer, but rather
were disseminated using a consensus
protocol similar to Byzan~ine agreement.
Then, each PE would calculate the sys-
tem diamosis from these results. The
problem-with this approach is that while
it assures that all processors have a
consistent view of the diagnosis of the
system, the syndrome dissemination is
exnensive and-halts useful mocessing. As.
a result, techniques resulting in dynamic
diagnosis have been explored.

Kuhl and Reddy [1980a] introduced the
term distributed diagnosis. In their
model, a processor in a distributed envi-
ronment has reliable information about
only those PEs in its neighborhood, i.e.,
those that it can communicate with via
direct communication paths. Data about

ACM Computmg Surveys, Vol. 25, No. 2, June 1993

194 “ M. Barborak et al.

the rest of the system is indirectly avail-
able from PEs outside of the neighbor-
hood. Distributed fault tolerance is the
notion that each fault-free PE should be
able to independently and correctly diag-
nose the entire system, then use this
knowledge to refrain from dealing with
any elements deemed to be faulty, and to
initiate fault recovery techniques [Kim
and Yang 1986]. The authors assumed
that fault-free PEs could accurately test
any other PE and that faulty PEs con-
ducted tests with unreliable results. Dal
Cin [1984] and Dal Cin and Florian
[1985] examined the problem of dis-
tributed diagnosis based on comparison
testing as well as time domain testing.

Kuhl and Reddy [1980a; 1981], joined
later by Hosseini et al, [1985], presented
a series of SELF algorithms. SELF2,
which meets distributed fault tolerance
as described above, is outlined here. It is
assumed that faults are permanent. Each
processor P, calculates a fault vector F,
whose ~’th element is a O (1) if P, con-
cludes that PJ is fault free (faulty). A
processor P tests each of its neighbors
and completes part of the fault vector. If
a neighbor is faulty then this condition is
broadcast to all the fault-free PEs that
themselves test P (obviously P has a
direct link to each of these PEs). When-
ever P receives a diagnostic message
about some faulty processor Q that was
previously considered fault free, it first
checks that it believes the last relay PE
of the message is fault free. P tests this
sender again, and if it passes, (1) the
information about Q is saved in the fault
vector and (2) the message is forwarded
to all those fault-free PEs that test P.
Otherwise, the diagnostic message is ig-
nored, the sender is marked as faulty,
and this information is sent to the testers
of P [Kuhl and Reddy 1980a]. Pradhan
and Reddy [1982] independently pro-
posed a similar scheme of test and accept
in order to reliably pass diagnosis infor-
mation in a distributed system.

Bagchi and Hakimi [1991] gave an op-
timal algorithm for the system model of
Kuhl and Reddy [1980a] that assumes no
more than t faults and fault-free commu-

nication links. Their algorithm requires
at most n – 1 + p(t + l), i.e., O(n), diag-
nosis operations and 3n log p + O(n +
pt), i.e., O(n log n), messages from fault-
free PEs where p is the number of fault-
free PEs. Bagchi [1992] examined the
same problem but for a specific intercon-
nection, namely a hypercube, with the
result being an algorithm requiring 0(n
+ t log n) tests and O(n + t210g n +
logzn) messages, or O(n) test and O(n)
messages if the number of faulty units t
is small.

In SELF3, Kuhl and Reddy [1980b;
1981] extended the SELF2 algorithm to
cover message corruptions caused by
faults in the communication paths or by
relaying a message through a faulty pro-
cessor. They also weakened the neces-
sary condition that the network have a
connectivity of t to be t-self-diagnosable.
In the Modified Algorithm SELF3,
Hosseini et al. [1985] altered SELF3 such
that fault-free PEs are never temporarily
misdiagnosed as faulty. See also the
NEW_ SELF algorithm described in
Hosseini et al. [1984],

The work of Hosseini et al. [1984; 1985]
illustrates the trend toward more reli-
able accounting of the nuances of an ac-
tual system. Liaw et al. [1982] modeled a
heterogeneous distributed system with a
graph-theoretical model where proces-
sors are marked as testing or contesting
units. A testing unit is a processing ele-
ment with the capability to test at least
one other processor. A nontesting unit
does not test any objects and relies
on other PEs to give it diagnostic infor-
mation. Communication links are
categorized and may handle general com-
munications, testing communications, or
both. Distributed diagnosis procedures
are given to specify between failed PEs
and links, Hosseini et al. [1985] used
these ideas in their algorithm for nonho-
mogeneous distributed systems. The
problem of link failure also maybe exam-
ined as a routing problem. A discussion
of this may be found in Bertsekas and
Gallager [1987].

Lombardi [1985] took the NMR tech-
nique for fault masking and cast it into

ACM Computing Surveys, Vol. 25, No. 2, June 1993

The Consensus Problem in Fault-Tolerant Computing ● 195

the system diagnosis framework: n pro-
cessors in a t-diagnosable system per-
form a number of tasks such that no task
is done fewer than t + 1 times. There-
fore, after the occurrence of any t faults,
all tasks will have been performed cor-
rectly at least once. First, results are
compared using NMR techniques to re-
lease a task as soon as possible and to
identify some faulty PEs. Next, if faulty
PEs remain unidentified, Byzantine
agreement is used to collect the results
reported by each processor which are in
turn used to diagnose the system. In other
words, Byzantine agreement is used to
distribute the centralized arbiter as-
sumed in classic system diagnosis. A
similar approach, i.e., disseminating the
syndrome to avoid centralized analysis,
was taken in the MuTeam approach dis-
cussed earlier in this section [Ciompi
et al. 1981].

Yang and Masson [1986] considered the
distributed diagnosis of a t,-diagnosable
system. The soft-fail model they em-
ployed covers intermittent faults in both
the PEs and communication links as long
as the total number of faults does not
exceed t,.Because a faulty PE or faulty
communication link does not necessarily
produce errors at any particular time it
is being exercised, the system may act in
a very capricious way, and, in fact, in a
Byzantine manner. Therefore, the diag-
nosis is not and cannot be guaranteed to
be complete. A set of maliciously faulty
processors could postpone a complete di-
agnosis indefinitely.

This algorithm overlaps with work
done by Dolev [1982] who studied the
diagnosis of systems suffering from
Byzantine failing processors and reliable
communication links with his Crusader
agreement algorithm described in Sec-
tion 5.2.6. In the Yang and Masson algo-
rithm [1988b], each processor begins by
testing other processors according to a
predetermined testing assignment. The
results of these tests are needed by other
processors to complete their test syn-
dromes, and therefore the test informa-
tion is sent to the other processors in the
system. The trouble is that this must be

done reliably, and the result is a protocol
that is very similar to Crusader agree-
ment, a form of Byzantine agreement.
This protocol guarantees that fault-free
processors can reliably transfer informa-
tion, and, therefore, all the useful syn-
drome information, i.e., all the results of
tests given by fault-free PEs, will be reli-
ably received by all fault-free processors.
At this point each processor performs di-
agnosis on the syndrome it has received
according to the algorithm given by Yang
and Masson [1985a] which can locate
faulty processors given that the syn-
drome is pf-compatible (Section 5.1.3).
The result is the diagnosis of a Byzantine
failing system based on the ability of a
test to uncover these failures.

5.1.6 Diagnosis of Multiprocessors

The diagnosis of tightly coupled multi-
processors presents some interesting
problems in that the communication
topology is often limited (particularly in
wafer-scale integration), and the number
of faulty processors may be very high
relative to n. In general, any diagnosis
algorithm is applicable to such a system,
but the capability to perform the diagno-
sis in a parallel fashion is inviting. Am-
mann and Dal Cin [1981], Dal Cin [1982],
and Somani and Agarwal [1992] have
presented both sequential and parallel
algorithms specifically targeted for such
systems.

5.1.7 Processor Membership

The principle of treating a group of pro-
cessors as a single identity in order to
provide a fault-tolerant service was in-
troduced as part of the ISIS system

[Birman 1985]. A result of this approach
is a need to know who is a member of the
group, a need satisfied by processor
membership.

Processor membership is similar to
distributed diagnosis in that both must
maintain a list of who is fault free with-
out aid from a centralized observer. A
processor is in the membership, or fault
free, if it can maintain a timely schedule

ACM Computing Surveys, Vol. 25, No. 2, June 1993

196 ● kl. Barborak et al.

of “present” messages. The problem is to
keep all the fault-free PEs informed of
the membership regardless of whether
PEs are joining or leaving the system.
Cristian et al. [1986] and Cristian [1989]
presented three solutions given as over-
lays on a synchronous system with
atomic broadcasts. The atomic broadcast
assures that all or none of the fault-free
processors will receive the message

(atomicity), that every fault-free proces-
sor receives messages in the same order

(order), and that the broadcast is com-
pleted in some known time bound A
(termination). With this mechanism,
Cristian [1991b] presented three proto-
cols for processor membership: the peri-
odic-broadcast protocol, the attendance
list protocol, and the neighbor surveil-
lance protocol. These protocols handle the
cases of faulty processors leaving the
membership and fault-free or repaired
processors joining the membership.

In each of these three protocols, Cris-
tian [199 lb] considered processor faults
only in the time domain and at the mes-
sage-passing level. Data domain faults
may be corrected, or at least detected, at
a lower level using coding techniques. To
detect timing faults, it is assumed that
each processing element has a local clock
that is synchronized to within a constant
of every other local clock. A processor is
faulty only if it fails to send an expected
message during an expected time.

The periodic-broadcast protocol re-
quires that every processor broadcasts a
“present” message with some predeter-
mined and globally known frequency. A
new membership is created when a pro-
cessor broadcasts a “new-group” message
at time T, which will be received by all

the fault-free PEs within T + A by the
nature of the atomic broadcast. In re-
sponse, each good processor broadcasts a
“present” message. Therefore, at T + 2A,
every fault-free PE knows the member-
ship of the system. This implies that the
delay to join the membership is 2A. New
rounds of “present” messages are sched-
uled to occur at T + 2A + kII, k =
1,2,3... where II is some time interval
based on the reliability of the system and

the frequency of testing that is desired. If
a PE falls out of the membership, then
this will be detected when it fails to send
a “present” message. The worst case is if

this PE just initiated a “new-group” mes-
sage, then at mostA + II time units will
pass before it is detected [Cristian 1991b].

Consider the system in Figure 7 in
which A has become faulty. Assume that
the network is a broadcast bus and that
8 is the broadcast delay, i.e., 8 = A. Ini-
tially, A was not faulty, and all PEs were
in the membership. Every II time units,
each processor would broadcast its “pres-
ent” message on the bus, and thus the
membership was maintained. A fails. The
failure of A will be detected at a time 8
after the next scheduled round of broad-
casts, and at that time, all fault-free pro-
cessors will have the new membership.
Eventually, a repaired A may return by
broadcasting a “new-group” message.

An obvious problem with the periodic-
broadcast m-otocol is that it fills the
communication network with “present”
signals at every testing round. In the
case that the network is based on ~oint-.
to-point communications, this overhead
could be prohibitive. For broadcast-chan-
nel-based networks. though. the result is

“J

only an O(n) message overhead [Cristian
1989]. This congestion is reduced for
~oint-to-~oint networks bv the atten-

dance lis~ and neighbor sur~eillance pro-
tocols at the expense of the system
response time to faulty PEs leaving
the membership. Thus, a highly volatile
membership could be inappropriate for
these techniques. In the attendance list
protocol, one’PE is assigned the task of
periodically initiating a roll call that cir-
culates around a logical cycle through
the membership. Each PE checks the
timeliness of the attendance list and for-
wards it. If any of the members does not
receive the list in time then an error has
occurred, and a “new-group” request is
made. The result is that message over-
head is decreased compared with the
periodic-broadcast protocol while main-
taining the maximum time to join the
membership and increasing the maxi-
mum time to detect a departure. The

ACM Computmg Surveys, Vol 25, No 2, June 1993

The Consensus Problem in Fault-Tolerant Computing

Figure 7. A broadcast bus network

processor membership.

maximum-de~arture detection

performing

time is

proportional ‘to the time it takes the
attendance list to circulate through the
membership [Cristian 1991 b].

Consider Figure 8 in which the net-
work uses point-to-point communication
with 6 being the delay on any direct link.
Thus, A is [n/216, making a broadcast a
significantly more costly operation than
in the previous example. To overcome
this cost, the attendance list protocol is
used. Initially, A is fault-free and elects
itself to periodically initiate the roll call.
As all the members have the same infor-
mation on who is in the membership, a

deterministic selection process known by
each processor and performed indepen-
dently of the other members assures that
only one member will initiate the roll
call. Every II time units, n messages are
sent, taking n 8 time, as the attendance
list is passed through the membership. A
fails. B does not receive the list at the

next scheduled round and so broadcasts
a “new-group” message which results in

the formation of the new membership.
The neighbor surveillance protocol

works in a manner similar to the atten-
dance list protocol. A logical cycle of the
processors in the membership is specified

and given a direction. Periodically, each
processor requests a neighbor confirma-
tion of its predecessor. If the confirma-
tion is not received during the correct
time frame then a failure has occurred,
and a “new-group” request is initiated to
establish the new membership. In the
case of a single-member departure, the
worst-case detection delay is better than
the attendance list protocol since all
neighbor confirmation messages may oc-
cur in parallel. The worst-case detection
delay is worse, though, in the case of

!!E3
Be

6

H D

GFE

Figure 8. A point-to-point network

processor membership.

multiple-member departures

1991bl.

. 197

performing

[Cristian

The- processor membership problem is
similar to the distributed-system diagno-
sis problem as both strive to determine
which processors are faulty and which
are not. Whereas distributed diagnosis
explicitly utilizes a test to do this, an
implicit test is assumed in the processor
membership model in that a PE is deter-
mined to be fault free if it can transmit

and forward messages in a timely man-

ner. Comparing these protocols given by

Cristian [1991b] with the Adapt algo-
rithm for distributed diagnosis described
in Section 7.3 leads to the observation
that neither assumes an initial member-
ship; neither assumes foreknowledge of
the system topology; and neither as-
sumes a simultaneous initiation of their
respective algorithms [Stahl et al. 1992].

Where the differences between proces-
sor membership and distributed-system
diagnosis lie is in the time assumptions
relaxed for processor membership. That
is, Cristian [1991b] has analyzed these
protocols based on assumptions about ap-
proximately synchronized clocks and
variable message delays. These time
characterizations of the system along
with the atomic-broadcast protocol allow
the processors in the membership to
maintain a consistent view of the mem-
bership, given that it can only be incon-
sistent for some determinable amount of
time. But as well as a difference, this
quality can be seen as an addition to
distributed-system diagnosis. That is, the
time domain fault model that Cristian
uses is orthogonal to the fault models
used in distributed diagnosis, and there-

ACM Computmg Surveys, Vol. 25, No. 2, June 1993

198 ● M. Barboraket al.

fore it and Cristian’s time-based analyses
are applicable to distributed diagnosis
without violating any previous assump-
tions. (Diagnosing faults in the time
domain as well as the data domain for
distributed-system diagnosis was pro-
posed by Dal Cin and Florian [1985].)
Conversely, the data domain fault detec-
tion and location abilities of distributed
diagnosis are equally applicable to pro-
cessor membership protocols which need
to explicitly cover those types of faults.

5.2 Research on the Byzantine

GeneraIs Problem

The original Byzantine agreement algo-
rithm presented by Pease et al. [19801
was expensive in both its communication
and system requirements. Therefore, two
areas of work have emerged: efficient
Byzantine agreement algorithms and
necessary system requirements for Byz-
antine agreement. (In this section, these
areas will be examined.) It is also evident
that if during an agreement algorithm a
set of values received by a processor does
not agree, then some processor must be
faulty. Identifying these processors is also
discussed in this section.

5.2.1 System Requirements

Fischer et al. [1985] gave the very im-
portant result that distributed, deter-
ministic (see the later section on
randomized algorithms) consensus is im-
possible in an asynchronous system with

just one faulty processor. If no assump-

tions are made about the upper bound on

bow long a message may be in transit A,
nor the upper bound on the relative rates
of processors @, then a single process
running the consensus protocol could
simply halt and de] ay the procedure in-
definitely. In fact, Dolev et al. [1987]
showed that if either A or @ were un-
bounded, then consensus is impossible in
the case of one fault. Dwork et al. [1988]
explored the effects of partial synchrony,
bounding A and @ individually, on
Byzantine agreement and gave algo-
rithms that operate on partially syn-

chronous systems. Earlier work bounding
A was done by Attiya et al. [1984]. It is
worthwhile to note that the randomized
Byzantine agreement algorithms de-
scribed later can operate in an asyn-
chronous system as they may take an
infinite number of rounds to complete.
The probability that this will happen,
though, is zero [Bracha and Toueg 1985].

Dolev et al. [1987] identified five sys-
tem characteristics that affect the ability
to reach Byzantine agreement. These
characteristics are as follows:

Processors. Either asynchronous, in
which processors may wait an arbi-
trarily long but finite period between
steps, or synchronous, in which after
some processor has taken @ steps
every other processor has taken a
step.

Communication. Either asynchro-
nous, in which messages may take
an arbitrarily long but finite period
to be delivered, or synchronous, in
which there is a constant A > 1 such
that messages are delivered within
A steps.

Message Order. Either asynchronous,
in which messages may be delivered
out of order, or synchronous, in which
messages are received in an order
according to the real time that they
were sent.

Transmission Mechanism. Either
point to point, in which in an atomic
step a processor may send a message
to at most one processor, or broad-
cast, in which in an atomic step a
processor may broadcast a message
to all processors.

Receive / Send Either separate, in
which in an atomic step a processor
cannot both send and receive, or
atomic, in which in an atomic step a
processor will both receive and send.

Dolev et al. [1987] showed that n-re-
silient agreement, i.e., agreement in
which n faulty processors may be toler-
ated, may be obtained in four cases,
namely:

ACM Computmg Surveys, Vol. 25, No 2, June 1993

The Consensus Problem in Fault-Tolerant Computing ● 199

(1)

(2)

(3)

(4)

Synchronous processors and synchro-
nous communication

Synchronous processors and synchro-
nous message order

Broadcast transmission and synchro-
nous message order

Synchronous communication, broad-
cast transmission, and atomic re-
ceive/ send.

They further showed that agreement may
not be reached at all except in two other
cases, asynchronous processors, syn-
chronous communication, point-to-point
transmission, atomic receive/send, and
both asynchronous and synchronous mes-
sage order, in which 1-resilient agree-
ment may be had, Another presentation
of this material may be found in Turek
and Shasha [1992].

An interesting contrast to the need for
synchronization of processors and com-
munications is approximate agreement

(described later). In this case, processors
need only agree on a value to within
some constant. Under this requirement,
a synchronous environment is not re-
quired.

5.2.2 Efficient Byzantine Agreement

The algorithm given by Pease et al. [1980]
requires n = 3t + 1 processors, t + 1
rounds, and messages of the size O(nf+ l),
as the amount of information exchanged
between any two processors increases ex-
ponentially. For Byzantine agreement,
there are three independent resources:
processors, rounds, and message size
[Coan 1988]. An ideal, deterministic,
unauthenticated Byzantine agreement
procedure would use 3t + 1 processors,
t + 1 rounds, and messages of size one
with the total number of message bits
being O(t 2). Though it is possible to cre-
ate procedures that are optimal in some
of these respects, no algorithm optimized
in all three categories has been found.
For example, Coan gave an algorithm
that uses O(t 15, processors, t + 1 rounds
of communication, and messages of size
O(t log n) while Toueg et al. [1987] pre-
sented a scheme with 3t + 1 processors,

2 t + 1 rounds, and message sizes polyno-
mial in the number of processors.

Bar-Noy and Dolev [1991] asked if
there even exists an algorithm that opti-
mizes all three parameters. They
suggested the following problem as a re-
duction of this question: Is there an
algorithm with one-bit messages that
terminates after t + 1 rounds with n =
O(t)? An algorithm using (2 t + l)(t+ 1)
processors, t i-1 rounds, and one-bit
messages, and which did not need to
know where messages originated, was
presented. One of the most exciting as-
pects of the algorithm is the ease with
which it could be implemented in hard-
ware. This is because: (1) messages con-
tain only one bit of information; (2)
rounds in which processors receive or
send messages rely only on the clock and
are not data dependent; and (3) proces-
sors need only a simple piece of circuitry
to calculate the majority result of a num-
ber of binary values to determine the
message they should send.

A method of hybridizing Byzantine
agreement algorithms has been intro-
duced to produce efficient results from
existing algorithms that are optimal in
certain, but not all, respects. Bar-Noy
et al. [1992] base their hybrid-agreement
protocol on three less efficient protocols:
(1) an exponential algorithm similar to
that presented in Pease et al. [1980] that
can tolerate [(n – 1)/3j faults in just
t + 1 rounds but requires that message
size and local computation time grow
exponentially; (2) a more efficient

[(n – 1)/41 -resilient algorithm, and (3)
an optimally efficient agreement algo-
rithm, except in its resiliency, which is

1~1 faulty processors. The hybrid al-
gorithm runs the first algorithm for a
certain number of rounds, switches to
the second algorithm for a certain num-
ber of rounds, and finally switches to the
third algorithm to complete the Byzan-
tine agreement. The number of rounds
that each algorithm runs is based on the
number of faulty processors that are de-
tected. (See Section 5.2.6 for a discussion
of fault detection during Byzantine
agreement.) The idea is to detect faults

ACM Computing Surveys, Vol. 25, No 2. June 1993

200 “ J/f. Barborak et al.

and then mask their results by always
assigning a default value to their mes-
sages. In this way, the favored value of
each fault-free processor becomes re-
vealed to the other fault-free processors
as the ability of the faulty processors to
stop this from occurring is destroyed.
Therefore, it is possible to switch be-
tween al~orithms based on whether or
not a persistent value, i.e., a value fa-
vored by a sufficient number of fault-free
m-ocessors. exists. If one does not exist.
after a certain number of rounds then a
large number of faulty processors have
had to corru~t messages. and therefore
have been d~tected b; fault-free proces-
sors. If a persistent value does exist after
a certain number of rounds, Bar-Noy
et al. [1992] showed that it will not mat-
ter what the faulty processors do, as it is
too late to stop the fault-free processors
from agreeing on that value. The result
is an algorithm that can tolerate
[(n – 1)/3] faulty processors using t +
o(t) rounds of message passing, O(n~),
2< b < t message bits, and local compu-
tation time polynomial in n.

Similar techniques of hybridization of
algorithms and utilization of fault detec-
tion to improve fault masking have been
used by other researchers to produce effi-
cient Byzantine agreement algorithms.
Moses and Waarts [1988] reported an
algorithm that requires 6 t + 1 proces-
sors, 0(t8) message bits, and t + 1
rounds. Berman et al. [19891 re~orted a. .
similar algorithm in terms of these cost
measures, but which requires only 4 t + 1
processors.

Coan and Welch [1992] use hybridi-
zation to produce a more efficient al-
gorithm than any of its constituent
algorithms. In their approach, advantage
is taken of the fact that fewer processors
involved in Byzantine agreement results
in fewer messages. Moreover, in order for
a group of processors to report the re-
sults of a Byzantine agreement, only 2 t
+ 1 members need to broadcast the re-
sult such that the faulty processors can-
not corrupt the transmission. Therefore,
to reach agreement, the system is di-
vided into a number of disjoint commit

tees, each of which performs Byzantine
agreement. Then the committees share
their results via the broadcast described
earlier. These steps are performed recur-
sively to finally reach a global agree-
ment. As a result, the hybrid algorithm
uses 3t + 1 processors, t + o(t) rounds,
and 0(t2) message bits. A similar pro-
posal for reducing the message costs in-
volved in reaching Byzantine agreement
is found in Barborak and Malek [1993].

5.2.3 Communication Redundancy for
Efficient Agreement

In many cases, the price of a Byzantine
agreement protocol is too high. These
protocols rely on redundancy in the time
domain to mask faulty processors and
slow down system performance. Babaoglu
and Drummond [1985] looked at mask-
ing of these processors in the space do-
main. Usually this is done by replicating
the processors, which implies a voter and
extra communication hardware, but it
may also be done by putting redundancy
into the network. In a broadcast system,
such as an Ethernet or a Token Ring, a
single bus is replaced by b buses, and
each processor is given ports to these
lines. Cristian [1989] showed that in
these systems, t faults may be masked
with no more that t + 1 messages on
b = t + 1 buses regardless of the total
number of processors. Moreover, some di-
agnostic information can be gathered
from each broadcast.

5,2.4 Randomized Byzantine Agreement

Randomized Byzantine agreement algo-
rithms have been proposed for their lower
average number of rounds and lower
message requirements when compared to
deterministic algorithms. In fact, the sys-
tem no longer must be synchronous, and
the number of rounds may be less than
t + 1; yet Bracha [1987a] proved that
randomized algorithms for asynchronous
systems require the number of PEs still
to be greater than or equal to 3t + 1.

The idea of randomizing the agree-
ment algorithm is that at any particular

ACM Computmg Surveys, Vol. 25, No, 2, June 1993

The Consensus Problem in Fault-Tolerant Computing “ 201

round, there is a probability that the
faulty PEs can thwart the consensus, but

there is also a probability that Byzantine
agreement will be reached. By randomiz-
ing the decision, it can be assured that
different situations will constantly arise
and that the faulty PEs will eventually
fail to break the consensus. Of course,
the probability of this not happening in
some expected amount of time must be
considered when calculating the reliabil-
ity of the system.

Randomized Byzantine agreement was
first studied by Rabin [1983], Ben-Or
[1983], and Bracha and Toueg [1983] pri-
marily for asynchronous systems. Unfor-
tunately, these algorithms require the
system to be initialized with a list of coin
flips created by some “trusted dealer.”
Shamir [1979] gave a method of keeping
the values on the list secret until they
were needed thus making it impossible
for faulty processors to predict coin fbps.
Once initialized, the algorithms would
complete in a constant expected number
of rounds. Along these lines, Bracha
[1987b] presented an O(log n) expected-
rounds algorithm, which is better than
the lower bound of t + 1 rounds for de-
terministic algorithms, for t = n/(3 + ~),
E>o.

Chor and Coan [1985] proposed an effi-
cient algorithm for synchronous systems
that uses 3t + 1 processors, expected
O(t/log n) rounds, and 0(n2t/log n)
messages that does not require an initial-
ization of the system. The algorithm is
completely distributed and results in all
the fault-free processors agreeing on
a single binary value. Initially, each
processor receives some input that it con-
siders the correct value. This value is
broadcast to all the other PEs. Upon re-
ceipt of these messages, each processor
may change what it considers to be the
correct value. If at least n – t messages
have the same value, where n is the
number of processors and where t is the
maximum number of those which may be
faulty, then this value is considered cor-
rect; otherwise, the processor favors
neither value as correct. A group of
processors performs a random coin toss

(as described later). Once again, each
processor broadcasts its favored value or
an “undecided” message. A processor
then counts the more popular value, other
than “undecided,” that it has received.
Call this value v, and let k be the count
of messages with this value. If k > n – t
then the processor decides v is correct
and exits the algorithm. If n – t > k > t
+ 1 then u becomes the favored value,
and the algorithm repeats itself. If t + 1
> k then the processor assigns the value
of the coin toss to its favored value, and
the algorithm repeats.

The processors are divided into many
disjoint groups of size g to perform the
coin toss. At any round, one group will
perform the toss. Each member tosses a
coin and broadcasts the results. Thus,
the toss of the group is the majority of
the individual tosses. If more than half
the group is faulty, then the toss will be
to the advantage of the faulty PEs. Oth-
erwise, there is a sufficiently large prob-
ability that all the fault-free members of
the group will produce the same toss
overriding the faulty members. In any
case, there are at most 2 t/g disjoint
groups with a majority of faulty PEs, so
after at most that many tosses, there will
be a toss whose result is to the disadvan-
tage of the faulty processors with proba-
bility 1/2 [Chor and Coan 1985; Shamir
1979].

Chor and Coan [1985] proved that a
configuration of groups could be formed
such that the coin tosses would be suffi-
ciently random to foil any adversarial
scheme. Moreover, they showed that at
any particular round, there is a value of
the random coin that will cause the algo-
rithm to terminate and that this value is
unknown till the end of the round. Since
the adversary model (see Section 3.1) does
not allow the prediction of random vari-
ables, the algorithm will terminate with
a probability arbitrarily close to one.

This algorithm given by Chor and Coan
[1985] is considered too slow as the global
coin flip algorithm must be performed
every time it is needed. Feldman and
Micali [1988] presented a technique to
initialize the system with a large number

ACM Computing Surveys, Vol. 25, No. 2, June 1993

202 “ J/f. Barborah et al.

of coin flips without the aid of a trusted
dealer, in a constant expected number of
rounds and in a way that no processor
knows the value of the next flip until it is
needed. Thus once the system is initial-
ized, a number of “fast” agreements may
take place.

Ben-Or [1983] and Bracha and Toueg
[1985] studied randomized agreement in
the case of fail-stop processors with the
result that n/2 faults could be tolerated.
Chor et al. [19891 examined randomized
agreement for the fail-stop and omission
fault models.

5.2.5 Approximate Agreement

In situations where each processor holds
an estimate of some global value, such as
the time. or an external variable mea-
sured by sensors connected to each pro-
cessor, it is no longer necessary to reach
exact agreement. If a group of sensors
can measure a stimulus with a precision
no greater than + ~ then there is little
point in having the processors agree on a
more precise value. As a result, the prob-
lem of approximate agreement has been
introduced.

Mahaney and Schneider [1985] studied
the similar problem of inexact agree-
ment. In this work it was assumed that
all the processors’ values were within
some known bound prior to execution of
the agreement algorithm.

Dolev et al. [1986] studied a protocol
designed to reach a consensus on a real
value rather than a discrete value. The
rules for this approximate agreement are
that the final values obtained by each
correct -processor should be in the range
of all the initial values and that all val-
ues should be in agreement to within e.
The uses of such an algorithm include
clock synchronization and sensor stabi-
lization. Using successive approximation
techniques, terminating algorithms were
given that would agree on arbitrarily
close values in either synchronous or
asynchronous environments, although
for the asynchronous environment n >
5t + 1.

Fekete [1991] also studied approxi-
mate-agreement algorithms and gave

asymptotically optimal procedures. More-
over, these algorithms guarantee exact
agreement after t + 1 rounds and prior
to that, try to locate faulty PEs to correct
their outmts and cause a cmicker con-.
vergence of the agreement. Mahaney

and Schneider [1985] used a similar
approach, i.e., detecting failure to aid

agreement.

5.2.6 Diagnows of Byzantine Processors

Dolev [19821 noted that the bound on the
number of faulty processors assumed for
nonauthenticated Byzantine agreement
could be used to diagnose those faulty
processors. As a result, he introduced a
new problem called Crusader agreement
based on the following two requirements:

● C 1 All the reliable mocessors that do.
not explicitly know that a processor z
is faulty agree on the same value for z.

● L’2 If a wrocessor is fault free. then.
all the fault-free processors agree on
its value.

Compared to the interactive consis-
tency requirements for Byzantine agree-
ment given in Section 2.2, condition C2
is the same as the consistency condition.
Condition Cl is slightly different from
meaningfulness in that only fault-free

processors that are not certain z is faulty

must agree on a value for z. This leads

us to ask: how does a processor know
when another processor is faulty?

Consider a point-to-point network
whose connectivity is 2 t + 1 where t is
the maximum number of faulty PEs, and
n > 3t + 1 where n is the number of PEs
in the system. Note that both of these
conditions are necessary for reaching
Byzantine agreement and, therefore,
Crusader agreement, since Dolev [1982]
showed that an algorithm that reaches
Crusader agreement may be used to
reach Byzantine agreement, i.e., a sys-
tem capable of reaching Crusader agree-
ment must also be capable of reaching
Byzantine agreement. Now suppose that

a processor Z~ sends its value to each
other m-ocessor in the svstem 2 t + 1
times ~long disjoint paths ~hich will ex-
ist due to the connectivity of the system

ACM Computmg Surveys, Vol. 25, No, 2. June 1993

The Consensus Problem in Fault-Tolerant Computing * 203

graph, according to the Menger theorem
[Harary 1972]. A reliable processor u re-
ceives a set of messages, along with the
route they supposedly traveled, trans-
ferred from u possibly through all fault-
free processors and possibly through a
number of faulty processors. As a result,
u tries to find a set of no more than t
processors which, when removed from the
system along with all the messages they
transferred, leave the remaining mes-
sages in agreement. If no such set of t or
fewer processors exists, then u knows
explicitly that u is faulty [Dolev 1982].
This does not mean that every fault-free
processor knows that u is faulty. Based
on this ability to diagnose faulty proces-
sors, Dolev gave an algorithm to reach
Crusader agreement, which he claims re-
quires many fewer messages than
Byzantine agreement. A similar ap-
proach with the added benefit of directly
testing each processor was examined by
Yang and Masson [1988b] and is de-
scribed here in Section 5.1.5.

Shin and Ramanathan [1987] used a
similar approach as Dolev [19821 to diag-
nose systems suffering from Byzantine
failures, except in this case, authenti-
cation is used. Once again, only the
original transmitter of a message is
diagnosed by a processor that receives
that message, but in this situation, the
information is collected over several
rounds of agreement or perhaps over a
mission in which repair or removal of
processors is not feasible. At the time of
diagnosis, the processors use authenti-
cated Byzantine agreement to pass the
syndrome information that each has col-
lected so that each fault-free processor
has the diagnostic information collected
by each of the other fault-free processors.
From this complete syndrome, each pro-
cessor attempts to diagnose the faulty
processors in the system which may or
may not be possible. The authors show
that in a system with n >2 t -t 2 proces-
sors, a faulty processor will be correctly
diagnosed if it is identified as faulty by
at most t + 1 processors.

Walter [19901 described a similar ap-
proach to that of Shin and Ramanathan
[1987] which performs diagnosis in the

Multicomputer Architecture for Fault
Tolerance (MAFT). In this case, though,
diagnosis is performed on-line as each
processor collects diagnostic information
about the other processors in the system
rather than after some mission time.

Adams and Ramarao [1989] abstracted
the task of diagnosis to handle situations
in which diagnosis is based on value dis-
crepancies during Byzantine agreement,
test results during system diagnosis, or
any operation in which one processor
gains information used to verify evidence
that another processor is faulty. Their
approach is to allow the processors to run
for a certain amount of time, e.g., a test-
ing round or a mission, collect these eui-
dences, then distribute these evidences
such that each processor may perform a
diagnostic algorithm on them. The au-
thors gave an optimal diagnostic al-
gorithm in the respect that no other
algorithm would be able to correctly di-
agnose more faulty processors from the
evidences.

5.2.7 Related Problems to Byzantine Agreement

A number of problems have been pre-
sented that are similar in nature to
Byzantine agreement and that possess
similar requirements. In Fischer et al.
[1986], weak Byzantine agreement, the
Byzantine firing-squad problem, approxi-
mate agreement, and clock synchroniza-
tion are examined. It was found that they
all require that n >3 t + 1 must hold
and that the connectivity of the commu-
nication graph must be at least 2 t + 1.

Weak Byzantine agreement is similar
to Byzantine agreement in that one pro-
cessor is trying to broadcast its value u
to every other fault-free processor, but in
this case, it is only necessary for the
fault-free processors to agree on the value
u if every processor in the system is fault
free [Lamport 1983]. Otherwise, the
fault-free PEs could agree on some de-
fault value. An instance of weak Byzan-
tine agreement is the transaction commit
problem for distributed databases. Inter-
estingly, this problem is only solvable
when Byzantine agreement is solvable,
except when processors are allowed to

ACM Computmg Surveys, Vol. 25, No. 2, June 1993

204 e M. Barboraket al.

send an infinite number of messages prior
to making a decision (see Section 2.2).

The Byzantine firing squad problem is
similar to the weak Byzantine general
problem [Coan et al. 1985; Burns and
Lynch 1987]. In this case, a stimulus is
provided which ought to put all proces-
sors into a FIRE state at time T. The
rules of the problem are (1) if all the
processors are fault free and (2) at least
one receives the stimulus, then after some
finite delay, all will enter the FIRE state.
If all processors are fault free and if no
stimulus is received then no processors
will enter the FIRE state, Finally, if one
fault-free processor enters the FIRE state
at time T then all fault-free processors
enter the fire state at T. Once again, the
problem has the same requirements as
Byzantine agreement.

An agreement algorithm with decid-
edly fewer requirements than Byzantine
agreement is the Part-Time Parliament
problem or Paxon Synod protocol [Lam-
port 1989]. In this case, each processor
must maintain a local copy of a dis-
tributed database despite the effects of
any number of processors failing from
fail-stop, crash, omission, or timing
faults. Consistency of the local databases
is maintained although the time to up-
date a local database may be arbitrarily
long; thus any local database may be
out-of-date. Also, agreements to change
the database may be made in an order
different from the order of the initial re-
quests for those agreements. Lamport
showed that these limitations are suffi-
cient to implement a state machine (as
long as it is satisfactory for the machines
to be unsynchronized for an arbitrary
length of time) at a greatly reduced cost
over implementation via Byzantine
agreement.

A fundamental problem of fault-toler-
ant multiprocessor systems is the accep-
tance of data from an external source. If
the broadcast mechanism for this source
suffers from Byzantine faults, then each
processor could receive a unique input
value and calculate a unique result. In
this case, a fault-tolerant system would
fail, despite the fact that none of its PEs

had failed, because no correct result could
be determined. This problem is known as
the Input Problem [Krol 1991].

One solution to the Input Problem is to
use Byzantine agreement after the set of
inputs has arrived. This will make the
system view of the input consistent. Krol
[1991] introduced a set of algorithms
called Dispersed Joined Communication

(DJC) algorithms which solve the Input
Problem more efficiently, and in fact,
which include the algorithm given by
Pease et al. [1980] as a special case.

Classes .@(t, k, s, D, N) of DJC algo-
rithms are defined where t is the maxi-
mum number of faulty units; k is the
number of rounds required; s is the
source processor; D is the set of destina-
tion processors; and N is the set of all
processors in a fully interconnected syn-
chronous system. The behavioral proper-
ties of the DJC algorithms are: (1) If the
source and the destination are fault free,
then the message received by the desti-
nation is equal, after deciphering, to the
message held by the source and (2) if two
destination PEs hold different messages
after the termination of the k-round DJC
algorithm, then a message has traveled
along a path of k distinct PEs, all of
which, including the source, behave mali-
ciously. Krol [1991] proved that if t > 1,
k>2, s~N, DC N,andlDl>k+ 1
then the class of algorithms cd t, k, s, D,
N) is nonempty if and only if IN I >2 t +
k. He went on to give recursive proce-
dures for designing these algorithms.

Krol [1991] also showed that the inter-
active consistency properties, which hold
for all Byzantine agreement algorithms,
hold for the class of algorithms .@(t, k,
s, D, N)witht>l, k=t+ l,and D=N.

The flexibility of the DJC algorithms,

though, can make them more efficient.

Krol noted that the PEs performing

Byzantine agreement send, to the other

PEs, pieces of an error-correcting coded

message which are combined and deci-

phered by each fault-free PE. Namely,

the code is a simple repetition code that

only requires a majority vote to decipher.

That is, a processor will receive a series

of values, say 1, 1, 1, 0, and it will take a

ACM Computing Surveys, Vol 25, No 2, June 1993

The Consensus Problem in Fault-Tolerant Computing ● 205

majority vote of these values to deter-
mine the act ual value, in this case 1. The
repetition code is not the most efficient
error-correcting code, though, and the
DJC algorithms take advantage of this.
The DJC algorithms are configurable to
either increase coding, which reduces the
number of messages but increases the
minimal message size, or increase voting,
i.e., decrease coding, which reduces the
message size but increases the number of
messages. Krol showed that for “practi-
cal” systems, i.e., t < 3, these DJC algo-
rithms could be configured to outperform
deterministic, synchronous, unauthenti-
cated Byzantine agreement algorithms.

6. DIAGNOSIS VERSUS AGREEMENT

System diagnosis and Byzantine agree-
ment are two means to the same end. A
population of faulty and fault-free pro-
cessors must be reconciled to behave in a
consistent, specified manner. This can be
done either by masking (Byzantine
agreement) or by diagnosing (system di-
agnosis) the faulty processors. Here we
compare the two approaches to find
where their costs lie.

Fault coverage is a fundamental mea-
sure of any fault-tolerant scheme. If no
assumptions are made about failure
characteristics, i.e., the system is Byzan-
tine in nature, then the protocol must
operate despite malicious attempts to
stop it. Stronger failure semantics allow
less robust algorithms, but require bet-
ter-behaved environments.

Byzantine agreement protocols cope
with weak (Byzantine faults) to strict
(fail-stop, message authentication, pri-
vate communication channels) failure re-
quirements. On the other hand, system
diagnosis is more concerned with the na-
ture of the fault (permanent, transient,
or intermittent) than its consequences.
This is because these solutions count on
a test to reliably detect and locate the
fault, rather than on an approach which
can ignore and tolerate the faulty PE. As
a result, system diagnosis research has
focused on maximizing the productivity
of the test by looking at its nature (com-

parison versus directed) and the testing
assignment.

Comparison test diagnostics and
Byzantine agreement protocols run in
parallel with the useful jobs of the sys-
tem to achieve a high coverage at the
cost of system performance. A diagnostic
algorithm which uses the directed test
approach must do so off-line, thus requir-
ing recovery techniques to cope with er-
rors. But this approach has an advantage
in that there is no redundancy. Every
processor which was considered working
at the last test period may be given a
unique job to perform. If the processor is
later discovered to have failed, then the
tasks dating back to the last successful
test must be performed again. In terms
of real-time systems, a high throughput
is awarded for a long worst-case delay in
receiving a good result. Both comparison
test and Byzantine agreement algo-
rithms require redundancy to detect and
mask faults, respectively, but can meet
stricter deadlines.

It is difficult to compare the costs of
the Byzantine agreement and system di-
agnosis protocols because of their differ-
ences and their unknowns. First, the size
and nature of the task results affect the
basic Byzantine agreement protocol as
well as the comparison test in system
diagnosis. Second, Byzantine agreement
requires reliable communication between
pairs of processors unless messages may
be authenticated or unless the network is
replicated (although, see Section 5.2.2).
System diagnosis techniques may handle
largely varying network topologies. Third,
directed-testing system diagnosis pro-
tocols are strongly affected by the
frequency and complexity of the test.
Byzantine agreement is dependent on
the number of agreements that need to
be made. Fourth, researchers in the two
areas have adopted different failure
semantics for the faulty processor.
This drastically affects efficiency. Fifth,
centralized-system diagnosis, processor
membership, and Byzantine agreement
all maintain a consistent view of the sys-
tem state. In other words, each fault-free
PE is assured that its view of the system

ACM Computing Surveys, Vol. 25, No. 2, June 1993

206 ● M. Barboraket al.

is the same as that of each other fault-free
PE. Distributed-svstem diamosis can.
make the same assurance “by adding
time-outs or broadcasts. This is typically
not examined, though, and would affect
diagnosis efficiency.

Preparata et al. [1967] proved that for
their model it is necessary that n >2 t +
1 for a system to be one-step t-diagnosa-
ble without repair. Depending on re-

pairability, network structure, and the
use of probabilistic approaches, though,
this limit can change in either direction.
Pease et al. [1980] proved that for Byzan-
tine agreement, n > 3t + 1 is required to
mask t malicious processors (also Lam-
port et al. [1982]). This limit is affected
by assumptions on the authentication of
messages, the synchrony of the system,
network replication, and the use of prob-
abilistic approaches. These limits must
also be associated with a probability that
consensus will actuallv fail when these.
worst-case limits are reached. Babao51u
[1987a; 1987b] showed that there i; a
nonzero probability of correct Byzantine
agreement even when the number of
faulty processors exceeds the resiliency
bound. Somani et al. [1987] had similar
results for t-diamosable systems, and
Vaidya and Prad~an [1991] ‘showed that
detection of more than t faults could be
done inexpensively.

A qualitative comparison of system di-

agnosis and Byzantine aweement iS elu-
sive. That is, a comparison is difficult
when there is a difference. Classically.
Byzantine agreement is a problem if
communication while system diagnosis is
a problem of syndrome decoding. But due
to similarities in purpose as well as a
need to practically model similar sys-
tems, the areas are becoming more and
more entwined. For example, research in
distributed diagnosis, described in Sec-
tion 5.1.5, has modeled faults very arbi-
trarily and therefore has resorted to

Byza~tine agreement algorithms to dis-
tribute diagnostic information. Research
in Byzantine agreement has begun to look
at how agreement information can be

used to create svndromes that will allow.
a diagnosis of the system (see Section

5.2.6). As a result, there is very little if
any difference left between certain
branches of research on the Byzantine
Generals Problem and on system diagno-
sis.

Powell [1992] looked at the effect of
assumption coverage on system depend-
ability. He attempted to quantify the ad-
vantages of a fault model that does not

control the behavior of a faulty processor,
i.e., a Byzantine fault model, over a fault
model that demands a consistent behav-
ior from a faulty processor, i.e., the PMC
fault model, and over a fail-stop fault
model. Of course the tradeoff is that n a
3t + 1 for Byzantine faults, n >2 t + 1
for the PMC model, and n > t + 1 for the
fail-stop model. Thus, while Byzantine
agreement covers a very weak fault as-
sumption it is necessary to employ a great
deal of redundancy, which means that
there are more things to fail. Conversely,
the fail-stop model may not be terribly
realistic, but it requires a minimum
amount of equipment; and therefore there
are fewer things to fail. As a result, re-

pair rates, failure rates, and fault bounds
can affect which model will actually pro-
vide the most dependable system. In
other words, Powell has shown that the
assumption of Byzantine faults for criti-
cal applications is not always valid.

In conclusion of this section, Table 2
summarizes the models for consensus
along with some major results for those
models. Also, a relationship graph of the
various consensus models presents (Fig-
ure 9) a visual overview of much of the
work presented in this survey. In Figure
9, a node represents a model, and an

edge between two model nodes repre-
sents a simple extension between those

models. That is, a model will be related

only to the most similar models by an

edge labeled with the most significant

difference between them.

7. APPLYING CONSENSUS PROTOCOLS

Consensus algorithms take many forms,
and this section looks at some of the

applications and implementations of this

family of protocols. Preparata et al. [1967]

ACM Computmg Surveys. Vol 25, No 2, June 1993

The Consensus Problem in Fault-Tolerant Computing ● 207

and Pease et al. [1980] introduced the
problem in fairly abstract terms. Their

successors refined the models and as-

sumptions to reflect more closely the

conditions in a distributed computer net-

work, thereby creating workable schemes

for fault tolerance.

7.1 Applications of Byzantine Agreement

Often when ultrareliabilitv is not an is-
sue, fail-stop processors “are assumed.
That is, (1) a processor will halt rather
than perform an unexpected state transi-
tion; (2) its status is apparent to other
fail-stop processors; and (3) it utilizes
stable storage [Schlichting and Schnei-
der 1983]. Schneider [1984] used a
consensus protocol to create a virtual
fail-stop PE from a pool of processors
that can exhibit Byzantine failures. Thus,
when a highly available system is

required, the algorithms designed for
fail-stop processors can be used in con-
junction with the virtual fail-stop proces-
sor protocol.

Another popular application of consen-
sus is the synchronization of a system of
clocks. In fact, it was this synchroniza-
tion m-oblem that led to the develo~ment
of in~eractive consistency algorithms for
the SIFT project [Wens~ly it al. 1978].
Synchronization is a consensus on an ar-
bitrary time value at some precise, real
time. Lamport and Melliar-Smith [1984]
used Byzantine agreement solutions to
synchronize clocks in a system with faulty
processors and clocks.

At Draper Labs, Byzantine agreement
techniques were used to produce a Fault-
Tolerant Processor (FTP) for aircraft,
nuclear power plant, and submarine
monitoring and control [Lala 1986; Lala
et al. 1986]. In this project, a single, logi-
cal, fault-tolerant processor was im-
plemented with four fault-intolerant
~rocessors that synchronized their. .
work with Byzantine agreement proto-
cols. This atmroach was taken to ensure
that all fau’l~s would be masked at run
time. In order to diagnose faults, tests
were performed on the processors dur-
ing idle periods. In the Fault-Tolerant

Parallel Processor (FTPP) project (also
at Draper Labs) work has been done to
implement a parallel processor ma-
chine based on the concepts of Byzan-
tine agreement [Harper et al. 1988].
In this case, special consideration was
given to the communication network in
order to alleviate the cost of 2 t + 1
connectivity on disjoint charm els, which
is necessary for Byzantine agreement
[Dolev 1982].

The Philips Corporation has installed
Byzantine agreement into their fault-
tolerant switching system via the DJC
algorithms given by Krol [1991] (see Sec-
tion 5.2.2). In this (4, 2)-concept fault-
tolerant computer [Krol 1982], there are
four redundant processors accessing a
single error-correcting coded memory di-
vided into four separate modules. Krol

[1991] used the DJC algorithms to en-
sure that the four processors would
receive the same inputs whether the
system was connected to a single
source or to another fault-tolerant
multiprocessor.

7.2 Applications of Processor Membership

An early protocol designed to reach mem-
bership was implemented at Tandem
Computers to manage the processors
within their svstems [Bartlett 19781. The
basic assump~ion is fail-stop proce~sing.
Every second, each processor p broad-
casts an “I’m alive!” message. If proces-
sor p fails to receive a reply from q, it
marks q as possibly faulty. At the next
round of broadcasts. ~ also includes a
message to itself. If g ~gain fails to reply
then p checks to see if it received its own
message. If so, then q has failed, and
recovery procedures are initiated. Other-
wise p halts, and another processor will
diagnose it as faulty after two more
rounds of broadcasts. The protocol does
not truly reach membership though as it
is possible for p and q to have different
views of the set of fault-free mocessors.
For example, consider the ca~e when p
does not receive q’s response to its “I’m
alive!” message. Then suppose that q‘s
response to p’s second “I’m alive!” mes-

ACM Computing Surveys, Vol. 25, No. 2, June 1993

208 s M. Barborak et al.

Table 2. Models for Consensus with Results

Model Goal Result

Byzantine Interactive

Faults Consistency

Approximate

Agreement
Randomized
Agreement

Authenticated Interactive
Byzantine Consistency
Faults

Timing Faults Membership

PMC Model t-diagnosis
(one-step)

(sequential)

rz>3t+l

rounds > t+ 1
connectivity > 2 t+ 1
messages > O(nt)
message bits > 0(t2)
Synchronicity required
Algorithms—
3t + 1processors

t + O(t) rounds
0(tz)message bits
Synchromcity not required.
Algorithms
rz>3t+l

rounds < t+ 1

n>t

signatures > 0(nt)
rounds > t + 1
connectivity > t + 1
messages 2 O(n + t2)
Algorithms—

0(t) rounds
O(~z + tz) messages

Algorithms—
n>t

n>2f+l

Characterization—
t tests per PE

0(n25) diagnosis
Diagnosis in arbitrary

systems is NP-complete.
Diagnosability—
O(lElnl 5, algorithm

r2>2t+l

Characterization
Finding diagnosability

M co-NP-complete.

(set diagnosis) Finding t\s-dlagnosabihty

1s co-NP-complete,
Atgorithms—
0(n25) diagnosis for t = s

[Pease et al. 1980]
[Fischer and Lynch 1982]

[Dolev 1982]
[Dolev and Reischuk 1985]
[Dovel and Reischuck 1985]
[Fischer et al. 1985]

[Coan and Welch 1992]

[Dolev et al 1986]
[Fekete 1991]

[Bracha 1987a]

[Lamport et al. 1982]
[Dolev and Reischuk 1985]
[Dolev and Strong 1983]
[Lamport et al. 1982]
[Dolev and Relschuk 1985]
[Dolev and Relschuk 1985]

[Cristlan 1991b]

[Preparata et al. 1967]
[Hakimi and Amin 1974]

[Dahbura and Masson 1984a]
[Fujlwara and Kinoshita 1978]

[Sulhvan 1984]

[Pre~arata et al. 19671
~Hu~ng et al. 1989] ‘
[Raghavan and Tnpathi 1991b]

[Sullivan 1984]

[Dahbura and Masson 1984a]

sage also fails. In this situation, q has
received p’s messages and therefore
includes p in its membership, but p be-
lieves that q has failed and thus ex-
cludes q from its membership. Therefore,
the Tandem scheme does not maintain a
consistent view of the set of fault-free
processors and cannot be called a mem-
bership protocol.

Another example of a system using
fail-stop processors is the Delta-4 Extra
Performance Architecture [Barrett et al.
1990]. A process might have several
copies running on distinct processors,
but its results are issued from a single

“leader.” A failure of the leader will be
uncovered through a time-out allowing a
“follower” processor to use checkpointing
or simultaneous execution to take the
role as leader. This method is similar to
Cristian’s [1991] membership protocols
(also [Bartlett 1978]).

The Delta-4 system also furnishes com-
parison testing of processes in the com-
munication layer. Several processors
executing the same process provide a sin-
gle result to another group of processors.
This is done using majority voting of
signatures in the communication subsys-
tem, which allows fault diagnosis with-

ACM Computmg Surveys, Vol. 25, No. 2, June 1993

The Consensus Problem in Fault-Tolerant Computing ● 209

Table 2—Continued

Model Goal Result

BGM Model

Comparison
Testing

Adaptive
Testing

Intermittent
Faults

Probabilistic
Faults

t-diagnosis

(one-step)

t-diagnosis

(one-step)

t-diagnosis

t,-diagnosis

p-t-diagnosis

Characterization—
n–22t

O(nt 2) diagnosis
Model

Model using PEs
as comparators

Characterization—
Testing assignment

connectivity > t
Diagnosis in arbitrary
systems is NP-complete.
Algorithms—

0(n5) diagnosis for
Maeng\Malek model.

tests >n+t–1
Algorithms—

O(log,n,,1 t) rounds
0(n) tests
Characterization—

[2t/31 s t, s f for a
t-diagnosable testing
assignment.
0(IEI) diagnosis

Characterization
0(n25) diagnosis
Finding diagnosability
is NP-hard.

[Barsi et al. 1976]

[Meyer 1983]

[Malek 1980]

[Chwa and Hakimi 1981a]
[Maeng and Malek 1981]

[SenWpta and Dahbura 19891
[Ammann and Dal Cm 1981]

[Blough and Pelt 1992]

[Sengupta and Dahbura

[Blecher 1983]

[Schmeicel et al. 1988]

19891

[Mallela and Masson 1978]

[Yang and Masson 1986]
[Maheshwari and Hakimi 1976]
[Dahbura and Masson 1984a]

[Sullivan 1987]

out the fail-stop requirement [Barrett
et al. 1990].

7.3 Applications of System-Level Diagnosis

An early example of system diagnosis
may be seen in the Micronet, a self-
healing network for signal processing
[DeGonia et al. 1978]. Multiple, homoge-
neous processors were connected by a bus.
Spare processors were used as standards
by which the others were checked and as
monitors that actually compared results
and reconfigured the system. A scheme
was developed such that intermittently
faulty PEs would be correctly diagnosed
and taken off-line, and incorrectly diag-
nosed processors would be brought back
on-line after retesting. Moreover, the au-
thors recognized that faulty PEs might
still be able to perform certain functions
and so diagnosed them according to func-
tionality loss. The entire system was a
hierarchical composition of these diag-
nosable, bus-based subsystems. Testing
was performed within and between levels

such that eventually the entire system
and all of its functions would be tested.

Agrawal [1985] suggested a broadcast
network connecting a pool of processors
and controlled by a reliable scheduler
and diagnostics manager as a fault-
tolerant architecture. Diagnosis and fault
tolerance is achieved via comparison
testing. The scheduler assigns tasks to
different processors, and the diagnostics
manager compares these results. If a
match occurs, the result is considered
correct; otherwise the task is rescheduled
until a match is found. In other words,
the number of processors involved in the
consensus is increased from two until any
pair of them matches results.

At the University of Erlangen-Nurn-
berg, system diagnosis was used for the
DIRMU (Distributed Reconfigurable
Multiprocessor) system which contained
25 PEs [Maehle et al. 1986]. The al-
gorithm implemented was similar to
SELF3 given in Hosseini et al. [1984]
and was able to diagnose PEs and com-
munication links as well as determine

ACM Computing Surveys, Vol. 25, No. 2, June 1993

210 “ M. Barborak et al.

Asynchronous Randomized Agreement Rabin 1983;

I Ben-Or 1983;

Bracha and Toueg 1983
Dolev et al. 1986

Approximate Agreement
Randomized Agreement

Partial Byzantine Fault Diagnosis

Synchrony

Membership Agreement
for Timmg Faults I

1

Time-Domain Tests
Adams & Ramarao 1989

Consistent Membership Evidence-Based Diagnosis

Distributed Byzantine Diagrrosls

Mallela & Maason 1978

Distributed
Diagnosis

Intermittent Faults
Karunanithi & Friedman 1977

Maheshwan & Hakimi 1976
Set Diagnosis

I
Processor-based Comparison Testing Robabilistic Diagnosis

r Comparison Testing Adaptive Testing

Maeng & Malek 1981 Hakiml & Nakajima 1984

Chwa & Hakmri 1981a

Figure 9. Consensus models

the intact configuration of the multipro-

cessor [Moritzen 1984]. Maehle reported
that system diagnosis worked without
problem over the five-year (1985-1990)
lifespan of the DIRMU system (private
communication, Oct. 1991).

At Carnegie Mellon University, system
diagnosis was applied to an Ethernet,
connecting over 100 workstations, by
adopting the distributed-diagnosis algo-
rithm NEW_ SELF given by Hosseini
et al. [1984] [Bianchini et al. 1990].
The CMU diagnosis solution called
EVENT_ SELF enhances the NEW_
SELF algorithm by (1) using time to syn-
chronize tests and detect faulty PEs, by
(2) allowing for PEs to join and leave the
set of fault-free PEs, by (3) calling for
reconfiguration testing after PE failures,
and by (4) assuming system stability to

ACM Computmg Surveys, Vol. 25, No. 2, June 1993

minimize overhead. It does not test for
faulty communication links.

EVENT_ SELF uses self-tests initi-
ated by outside PEs. When a processor A
tests another processor B, it actually
sends a request to B that it test itself. B
spawns a subprocess which reads from
the disk and executes floating-point oper-
ations. Thus, the operation of the disk,
the operating system software, and some
portion of the CPU are tested without
starving any productive tasks of re-
sources. The diagnosis algorithm treats
the result of this test as complete, and
the authors reported that this simple test
caught every processor fault that oc-
curred over a period of two years.

one of the major concerns of this work
was the communication overhead re-
quired by the NEW_ SELF algorithm. A

The Consensus Problem in Fault-Tolerant Computing ● 211

significant reduction may be had by com-
bining test requests and results. If pro-
cessor p is being tested by all of its
neighbors, then it need run the self-test
only once and report the same result to
these testers. If processor p is testing
some processor q and receives a request
for another test of q, then p may com-
bine these requests and disseminate the
test result accordingly. These simplifica-
tions work for two reasons: the benign
failure of processors and the implemen-
tation of the test as a self-test.

Another technique used for reducing
message transmissions was to take ad-
vantage of the stability of the system.
That is, a stable system has no faults or
joins occurring and thus requires no new
diagnosis. The authors [Bianchini et al.
1990] devised an event-driven algorithm
in which diagnostic information is not
passed unless a fault or join occurs.

Table 3 compares major characteristics
of NEW_ SELF [Hosseini et al. 1984],
Cristian’s processor membership [Cris-
tian 1991b], and EVENT_ SELF [Bi-
anchini et al. 1990].

Bianchini and Buskens [1991] contin-
ued the experiment at CMU with an
adaptive distributed-system diagnosis al-
gorithm (see Section 5.1.2) appropriately
called Adaptive DSD. Previously, the
testing assignment for the system was
defined a priori, but in this case tests are
performed as indicated by the current
fault set. That is, once a PE is diagnosed
as fault free, the tests it performs are
considered reliable, and therefore, any
other PE should only be tested once by
this fault-free PE to correctly determine
its status. Thus, the testing assignment
is adapted such that processors diag-
nosed as fault free perform all the testing
in the system. By validating diagnosis
information with a test of the source of
the message, the algorithm tolerates a
tester becoming faulty. As all processors
must be tested by a fault-free processor
to obtain a correct diagnosis, the mini-
mum number of required tests is n.
Adaptive DSD meets this lower bound
while still guaranteeing correct diagnosis
despite an unlimited number of faulty
PEs. Furthermore, the message count is

optimal at only nA t, where At is the
difference in the number of faults in the
current round of testing and the number
of faults in the previous round of testing.
This is optimal as At represents the
number of processor status changes, and
for each change one message must be
sent to each of n processors; thus, at
least nAt messages are required. The
cost of using a minimal number of tests
and a minimal number of messages is
reflected in the diagnosis latency which
in the worst case is t times greater than
that for EVENT_ SELF.

Adaptive DSD assumes that the sys-
tem is logically fully connected and that
communication links are reliable. Stahl
et al. [1992] relaxed these assumptions
in their algorithm Adapt which works
on-line in arbitrarily connected top-
ologies even in the case of unreliable
communication links. The algorithm
maintains a minimally strong testing
graph in each component of the system,
i.e., if the system becomes disconnected,
each component will continue to be diag-
nosed correctly. Testing is performed ac-
cording to the testing graph which is in
turn determined by the topology of the
system. Therefore, the performance of the
algorithm varies with the topology of the
system on which it is executing. During
periods in which no faults occur, the
number of tests required may range from
n to 2(n – 1), but in some “diabolical”
cases this number may go as high as
twice the number of edges in the system
communication graph during a processor
failure.

8. FUTURE RESEARCH

The trend in consensus problem research
has been toward incorporating higher
levels of realism into the solutions with
the ultimate goal being implementation.
Probabilistic approaches have emerged
due to their efficiency compared with de-
terministic solutions. Fault models and
test models that aim to describe actual
events in a distributed computing envi-
ronment have also been examined. This
section outlines many points of practi-
cality for creators of future consensus
protocols.

ACM Computing Surveys, Vol. 25, No. 2, June 1993

212 “ M. Barborak et al.

Table 3. A Comparison of Self-Diagnosis

Strategy NEW_SELF Processor Membership EVENT-SELF

System Model

Physical Network

The Test

Tested By

Diagnosis Time

Test Rounds

Fault Classes

Fault Validation

Joining

Leaving

System Stability

Graph model of physical
interconnection network
with test graph
embedded on it,

Arbitrary point-to-pomt
network.
Fault-tolerant mechamsms
included with the

PE (self-testing circuits,
monitors, watchdogs)
report PE status

on demand

Physically adjacent
neighbors

0(diameter of testing
graph).

Asynchronous, but fimte
in len~h.

Faulty processing elements

and commumcation
links.

Test the PE reporting

the fault at the next
test round.
New or repau-ed
PEs clear their

old messages
Dlagnosabihty Js

affected.
PE is diagnosed as
faulty and is ignored
by the fault-free PEs
System diagnosability
is decreased.

Redundant diagnosis
messages are sent with
high system overhead
even without faults.

Physical model with Graph model of physical

communication delays interconnection network

and completely connected and completely
logical graph connected lo~cal graph

w] th test graph emmbedded with test graph embedded
on ~~. on it.

Arbitrary pomt-to-pomt Viewed as a bus-based

network. network.

Self-tests Implied. On Self-test process

top of these is the tests OS process

ability to send and receive handling, disk 1/0, and

messages via a floating-point unit

reliable broadcast in a operation Must be

timely manner. able to send and receive
test results via
reliable communications
in a timely manner.

Lofical neighbors, preferably Closest neighbors on

Losing and gaining processor elements.
An admission that processors will fail is
made simply by the pursuit of consensus
algorithms. When a PE fails, it should be
removed from the fault-free membership
to improve diagnosability and diagnosis
efficiency. In large distributed systems,
there will be new or repaired fault-free

ph~sical ne~ghbors

O(dlameter of physical
graph) or O(number of
PEs).

Synchromzed by a global
clock, which implies

timing fault coverage.
Crash faults, omission

faults, timing faults,
Byzantine faults

(through atomic broadcast).
All PEs broadcast their
presence to reform the
group
A new or repaired PE
initiates a group
broadcast to reform the
membership and get the

membership list
A faulty PE is detected.
and a group broadcast
occurs, so the membership
reconfigures.
Diagnosability based on
new membership.
Neighborhood Survedlance
Protocol only has

one side of bus, also
lo~cal neighbors.
O(diameter of testing
graph).

Synchronous.

Faulty PE, omission
faults, timing faults.

Immediately test the PE
reporting the fault.

Test graph is reconfigured
The new PE

gets the system diagnosis
from the PEs it
tests.

A faulty PE mav be removed
from the system

causing a reconfiguration
of the test
graph and possibly the
same diagnosability.
Send only test requests
and results when there

test communications between are no faults or joins.
neighbors when If there is a fault or
there are no faults or Join then pass on the
joins. new diagnosis reformation.

computers to be added to the system in
an on-line manner. Therefore, the ability
to add elements without disrupting diag-
nosis is required, even if it is simply to
accommodate users who turn their work-
stations off in the evening and on in the
morning. This point is explicitly consid-
ered by Cristian [1991b] and Hosseini

ACM Computmg Surveys, Vol. 25, No 2, June 1993

The Consensus Problem in Fault-Tolerant Computing * 213

et al. [1984]. Little work has been done to
incorporate the diagnosis of failed PEs
into Byzantine agreement algorithms.

Imperfect tests. One of the most dis-
turbing phrases in the system diagnosis
research is “Processor A tests Processor
B.” Testing can be done in simple ways
by using comparison testing [Malek 1980;
Chwa and Hakimi 1981], fault detection
mechanisms like watchdog timers as in
the Tandem 16 computers, or simple di-
agnostic processes which run on the tar-
get processor [Bianchini et al.1990]. The
CMU experiment has shown that a sim-
ple self-test gives practical fault cover-
age. This coverage may not be enough for
certain systems, though, leaving open the
question of whether direct-testing
schemes are sufficient in ultrareliable
systems.

Distributed diagnosis. Fault tol-
erance is the ultimate goal of system
diagnosis; therefore, centralizing the di-
agnosis function, and thereby creating a
“weak link,” is usually unacceptable.
Diagnosis should be performed by each
processing element to increase fault
tolerance and diagnostic responsiveness.

General network topologies. Related
to distributed diagnosis is the structure
of the network. Much work has been done
searching for classes of testing graphs
that satisfy the requirements of certain
diagnostic algorithms, but more needs to
be done to learn how to overlay these
testing assignments efficiently on physi-
cal communication systems [Fussell and
Rangarajan 1989]. This includes adapt-
ing to changing topologies due to data
link failures or repairs.

System ouerhead. As always, algo-
rithm efficiency is of interest. It is neces-
sary to reduce the number and size of the
messages until their effect on other com-
munications is virtually transparent.
Otherwise, diagnosis itself might become
the system bottleneck. Currently, Byzan-
tine agreement protocols can handle only
a few faults, i.e., three or fewer, before
the overhead becomes unbearable [Krol
1991].

Very large systems. The desire to con-
nect equipment is overwhelming, and the

result has been very large computer net-
works such as Arpanet and Internet. Ob-
viously, no single PE needs to know the
status of every other element in the
system. Therefore, one should consider
hierarchical schemes of diagnosis and
computing in which a processor knows if
a server pool is still operating, as in
Barborak and Malek [1992]. Information
would be on the basis of what partition of
servers is desired, while in that parti-
tion, diagnosis or masking would occur in
one of the many manners described in
this paper. That is, each group of servers
would have its own consensus protocol
dependent on the goal of that partition.
At the next level, partitions would diag-
nose each other to determine if the num-
ber of faulty elements within a group had
precluded correct diagnosis or masking.

Time. Analysis in the time domain is
perhaps the most important charac-
teristic of the work done in processor
membership [Cristian 1991 b]. It is
reasonable, with the increasing demand
for responsive (fault-tolerant, real-time)
systems [Malek 1990], to construct diag-
nostic algorithms in the time domain.
Many processor failures are detectable
with timing constraints. A crash or omis-
sion fault will cause a receiver to time-
out, and a timing fault implies a receiver
received a message when it was not ex-
pecting one. In all cases, the test of a
processor should cover the ability to send
and receive messages in a timely man-
ner. Fischer et al. [1985] showed the im-
portance of synchronization and time and
that ignorance of the time performance of
a processor can render Byzantine agree-
ment impossible.

Bounded faults. The notion of t-di-
agnosability is rather conservative in
many realms. In a small network of com-
mon workstations, which tend to be
highly reliable, more than two or three
faults could be unreasonable. Given such
constraints, very efficient diagnosis algo-
rithms might exist. More general algo-
rithms could still be required for low
yield, wafer-scale systems, or nonre-
pairable “mission” systems. One solution
is to develop algorithms which make no

ACM Computing Surveys, Vol. 25, No. 2, June 1993

214 “ M. Barborak et al.

assumptions about the number of faulty
PEs, but which are almost always cor-
rect, such as in Dahbura et al. [1987].

Network characterization. Little has
been reported on the frequency and types
of faults experienced in large distributed
networks. Practical information of this
sort could greatly increase the potential
usefulness of the consensus protocols that
have been surveyed. For example, the
class of Byzantine faults is far-flung and
includes situations that may occur so
rarely as to make them probabilistically
nonexistent. In this case, an algorithm
with more stringent demands on the
faulty hardware may perhaps be more
efficient while achieving the same re-
sults.

9. CONCLUSIONS

In many cases, a consensus protocol dic-
tates certain characteristics of its target
system. It may assume private communi-
cations or a centralized arbiter among
others. Moreover, the protocol can influ-
ence the type of decision to be made. An
algorithm may operate on the basis that
a single result is incorrect or that a pro-
cessor is untrustworthy. In the future,
consensus protocols will impact decision
systems and decision making rather than
vice versa. Their presence at all levels of
computing guarantees a high priority of
efficiency. A natural dilemma arises: ei-
ther to examine a generic framework
which will apply to any system, e.g., com-
puting, economics, government, etc.,
which is reminiscent of Byzantine agree-
ment, or to assume a computing environ-
ment, develop requirements for high
performance, and then find an analogy
for, or start anew on, other systems,
which is the direction system diagno-
sis research is taking. Whatever the
outcome, these fundamental consensus
algorithms will persist despite the under-
lying framework and will affect systems
of multiple computing elements to come.
Thus, the work presented in this paper is
an outline for a new method of fault-
tolerant system design.

10. SUMMARY

The importance of the consensus problem
stems from its ubiquitous nature in dis-
tributed fault-tolerant computing. It is
alternately veiled as a synchronization
problem, a reliable communication proto-
col, a resource allocator, a task sched-
uler, or a diagnosi s/reconfiguration
scheme, among others. Playing a role in
so many aspects of computing makes it
fundamental. In this paper, the particu-
lar consensus application of producing a
correct result in an environment that in-
cludes faulty processors was examined.
Two schools of thought reign: system di-
agnosis, in which a population keeps tabs
on its faulty processors, and Byzantine
agreement, in which faulty processors are
masked by an abundance of fault-free
constituents. The history of these two ar-
eas was outlined with the hope that fu-
ture researchers would reconcile both
fields or at least draw from the more
appropriate source, depending on the ap-
plication. The paper also discussed how
these ideas are being put to work in real
systems. Finally, directions for more work
were proposed with the belief that practi-
cality and implementability will be of
high priority.

ACKNOWLEDGMENTS

The authors would like to thank Fred Schneider,

Leslie Lamport, and the anonymous referees for

their insightful comments.

REFERENCES

AIIAMS, J., AND RANfAR~O, K. 1989 Distributed dl -

agnosls of Byzantine processors and links, In
the 9th Internat~onal IEEE Conference on Dls-
trlbuted Conzputmg Systems. IEEE, New York,
562-569.

AGRAWAL, P 1985. RAFT: A recursive algorithm
for fault tolerance. In the Internatzomal Confer-
ence on Parallel ProgranwnLng, 814–821.

AMMANN, E., AND DAL CIN, M. 1981. Efficient al-

gorithms for comparison-based self-diagnosis
In Self-Dlagnosls and Fault-Tolerance.
Werkhefte der Universitat Ttibingen, 4 At-
tempto-Verlag, Tubingen, 1– 18.

ATTIYA, C , DOLEW, D., AND GIL. J. 1984, Asyn-
chronous Byzantine consensus. In the 3rd An-

rtual ACM Symposium on Pru-zclples of Dis-
tributed Computmg. ACM, New York, 119–13;3

ACM Computing Surveys, Vol. ?,5, No 2, June 1993

The Consensus Problem in Fault-Tolerant Computing ● 215

BABAOCiLU, O. 1987a. Stopping times of dis-
tributed consensus protocols: A probabilistic

approach. Infi Process. Lett. 25, 3 (May),
163-169.

BABA06LU, O. 1987b. On the reliability of con-
sensus-based fault-tolerant distributed com-
puting systems. ACM Trans. Comput. Syst. 5,
3 (Nov.), 394-416.

BABAOi2LU, O., AND DRUMMOND, R. 1985. Streets

of Byzantium: Network architectures for fast
reliable broadcasts. IEEE Trans. Softw. Eng.
SE-11 (June), 546-554.

BAGCHI, A. 1992. A distributed algorithm for sys-

tem-level diagnosis in hypercubes. In the IEEE
Workshop on Fault-Tolerant Parallel and Dis-
tributed Systems (July). IEEE, New York,
106-113.

BAGCHI, A., ND HAKIMI, S. 1991. An optimal al-

gorithm for distributed system level diagnosis.
In the 21st International IEEE Symposium on
Fault-Tolerant Computing. IEEE, New York,
214-221.

BARBORAK,M., ANDMALEK,M. 1993. Partitioning
for efficient consensus. In Proceedings of the
26th Hawaii International Conference on Sys-
tem Sczences (Maui, Jan. 5–8), 438–446.

BAR-N• Y, A., AND DOLEV, 1991. Consensus algo-
rithms with one-bit messages. Dwtrib. Comput.
4, 105-110.

BAR-N• Y, A,, DOLEV, D., DWORK, C., AND STRONG, R.

1992. Shifting gears: Changing algorithms on
the fly to expedite Byzantine agreement. Infi
Comput. 97, 205-233.

BARRETT, P., HILBORNE, A., BOND, P., SEATON, D.,

VERISSIMO, P., RODRIGUES, L., AND SPEIRS, N.
1990, The Delta-4 Extra Performance Archi-
tecture (XPA). In the 20th Znternatzonal IEEE

Symposium on Fault-Tolerant Computing.
IEEE, New York, 481-488.

BARSI,F., GRANI)ONI,F., ANDMAES’I’RINI,P. 1976.
A theory of diagnosability of digital systems.
IEEE Trans. Comput. C-25, 6 (June), 585–593.

BARTLETT, J. 1978. A ‘non-stop’ operating sys-

tem. In Proceedings of the Hawaii Interna-
tional Conference on System Sciences, 103– 119.

BEN-OR, M. 1983. Another advantage of free

choice: Completely asynchronous agreement
protocols. In the 2nd Annual ACM S.vmpostum
on Principles of Dwtributed Computing. ACM,
New York, 27-30.

BERMAN, P., AND PELC, A. 1990. Distributed
probabilistic fault diagnosis for multiprocessor
systems In the 20th Internatlanal IEEE Sym-
posLum on Faalt-Tolerant Computing. IEEE,
New York, 340-346.

BERMAN, P., GARA-i, J., AND PERRY, K. 1989. To-
wards optimal distributed consensus. In the
30th IEEE Symposmm on Foundations of Com-
puter ScLence. IEEE, New York, 410–415.

BERTSEKAS, D., AND GALLAGER, R. 1987. Data
Networks. Prentice-Hall, Englewood Cliffs,
N.J.

BIANCHINI, R., AND BUSKENS, R. 1991. An adap-

tive distributed system-level diagnosis algo-

rithm and its implementation. In the 21st In-

ternational IEEE Symposium on Fault-Tolerant

Computing. IEEE, New York, 222-229.
BIANCHINI,R., GOODWIN,K., ANDNYDICK,D. 1990.

Practical application and implementation of
distributed system-level diagnosis theory. In
the 20th International IEEE Symposumt on
Fault-Tolerant Co?nputing. IEEE, New York,

332-339.

BIRMAN, K. 1985. Replication and fault-tolerance
in the ISIS system. In the 10th ACM SIGOPS
Symposium on Operating Systems Principles.
(Dec.). ACM, New York, 79-86.

BIRMANK., ANDJOSEPH,T. 1987. Reliable com-
munication in the presence of faults. ACM

Trans. Comput. Syst. 5, 1 (Feb.), 47-76.

BLECHER, P, 1983. On a logical problem. Discr.

Math. 43, 107-110.

BLOUGH, D., AND PELC, A. 1992. Complexity of

fault diagnosis in comparison models, IEEE

Trans. Comput. 41, 3 (Mar.), 318-323.

BLOUGH, D., AND PELC, A. 1990. Reliable diagno-
sis and repair in constant-degree multiproces-
sor systems. In the 20th International IEEE
Symposium on Fault-Tolerant Computing.
IEEE, New York, 316–323.

BLOUGH,D., SULLIVAN,G., ANDMASSON,G. 1992a.
Intermittent fault diagnosis in multiprocessor
systems. IEEE Trans. Comput. To be pub-
lished.

BLOUGH, D., SULLIVAN, G., AND MASSON, G. 1992b.
Efficient diagnosis of multiprocessor systems

under probabilistic models. IEEE Trans. Corn
put. To be published.

BLOUGH, D,, SULLIVAN, G., AND MASSON, G. 1989
Fault diagnosis for sparsely interconnected
multiprocessor systems. In the 19th Interna-

tional IEEE Symposium of Fault-Tolerant
Computing. IEEE, New York, 62-69.

BLOUGH, D., SULLIVAN, G., AND MASSON, G. 1988.
Almost certain diagnosis for intermittently
faulty systems. In the 18th International IEEE

Symposium of Fault-Tolerant Computing.

IEEE, New York, 260-265.

BLOUNT, M. 1978, Modeling of diagnosis in fail-
softly computer systems. In the 8th Interna-
tional IEEE symposium on Fault-Tolerant
Computing. IEEE, New York, 53-58.

BLOUNT, M. 1977. Probabilistic treatment of di-
agnosis in digital systems. In the 7th Inferna-
tzonal IEEE Symposium of Fault-Tolerant
Computing. IEEE, New York, 72-77.

BRACHA, G. 1987a. Asynchronous Byzantine
agreement protocols. Znfi Comput. 75 (Nov.),
130-143.

BRACHA,G. 1987b. An O(log n) expected rounds
randomized Byzantine generals protocol. J.
ACM 34, 4 (Oct.), 910-920.

BRACHA, G., mr) TOUEG, S. 1985. Asynchronous

ACM Computing Surveys, Vol. 25, No. 2, June 1993

216 ● M. Barborak et al,

crmsensus and broadcast protocols. J. ACM32,

4 (Oct.), 824-840.

BRACHA, G., AND TOUEG, S. 1983. Resilient con-
sensus protocols. In the 2nd. ACM SVmposium

on Principles of Distributed Computtng. ACM,
New York, 12-26.

BURNS,J., AND LYNCH,N. 1987. The Byzantine
tiring squad problem. Adu. Comput. Res.: Par-
a{[. D@rib. Comput. 4, 147–~6~.

CHOR. B., AND CoAN, B. 1985. A simple and effi-
C1ent randomized Byzantine agreement algo-
ri thin. IEEE Trans. Softu,. Eng. SE-11, 6
(June), 531-539.

C!HOR, B., MERRITT, M., AND SHMOYS, D. 1989.

Simple constant-time consensus protocols in re-

alistic failure models. J. ACM 36, 3 (July),

591-614.

CHWA, K., AND HAKIMI, S. 1981a. Schemes for
fault-tolerant computing: A comparison of mod-
u Iarly redundant and t-diagnosable systems.
I,nf, Contr. 49, 212-238.

CHWPL, K., AND HAKIMI, S. 1981b. On fault identi-
f~cation in diagnosable systems. IEEE Trans.

Comput. C-30, 6 (June), 414-422.

CIOMPI, P., GRANDONI, F., AND SIMONCINI, L. 1981.
I)istributed diagnosis in multiprocessor sys-

tems: The MuTeam approach. In the 1IthIn-

ternational IEEE Symposium on Fault-Tolerant
Computing. IEEE, New Yorkj 25-29.

CoAN, B. 1988. Efficient agreement using fault
diagnosis. In Proceedings of the 26th Allerton

(~onference on Communication, Control and
Computing. Univ. of Illinois, Urbana, Ill.,
663-672.

CoAN, B., AND WELCH, J. 1992. Modular con-
struction of a Byzantine agreement protocol

with optimal message bit complexity. Znfi Com-
put. 97, 61-85.

CoAN, B., DOLEV, D., DWORK, C., AND STOCKMEYER,
1. . 1985. The distributed firing squad prob-
lem. In the 17th ACM Symposium on the The-
ory of Computing. ACM, New York, 335–345.

CRISTIAN, F. 1991a. Understanding fault-tolerant
distributed systems. Commun. ACM 34, 2

(Feb.).

CRISTIAN, F. 1991b. Reaching agreement on pro-
cessor-group membership in synchronous dis-
tributed systems. Dwtrib. Comput. 4, 175–187.

CRISTIAN, F. 1990. Fault-tolerance in the ad-
vanced automation system. IBM Res. Rep. RJ
‘7424 (69595),

CRISTL4N, F. 1989. Synchronous atomic broad-
(cast for redundant broadcast channels. IBM

Res. Rep. RJ 7203.

CRISTIAN, F., AGHILI, H., STRONG, R., AND DOLEV, D.
1986. Atomic broadcast From simple mes-
sage diffusion to Byzantine agreement. IBM
‘Tech. Rep. RJ 5244 (54244).

DAHBURA, A. 1988. System-level diagnosis: A
perspective for the third decade. AT& T BeU
Laboratories Report. Concurrent Computations:

Algorithms, Architecture, and Technology.

Plenum Press, New York.

DAHBURA, A. 1986. An efficient algorithm for
identifying the most likely fault set in a proba-
bilistically diagnosable system. IEEE Trans.

Comput. C-35, 4 (Apr.), 354-356.

DAHIWRA, A., AND MASSON, G. 1984a. An 0(n25)
fault identification algorithm for diagnosable
systems. IEEE Trans. Comput. C-33, 6 (June),
486-492.

DAHBURA, A., AND MASSON, G. 1984b. A practical
variation of the 0(n 2 5) fault diagnosis algo-

rithm. In the 14th International IEEE S,ynzpo-
sum on Fault-Tolerant Computing. IEEE, New
Yorkj 428-433.

DAHBURA,A., ANDMASSON,G. 1983a. Greedy di-
agnosis of hybrid fault situations. IEEE Trans.
Comput. C-32, 8 (Aug.), 777-782.

DAHBURA, A., AND MASSON, G. 1983b. Greedy di-

agnosis of an intermittent-faultjtranslent-up-
set tolerant system design. IEEE Trans. Com-
put. C-32,1O (Oct.), 953-957.

DAHBURA, A., LAFERRERA, J., AND KING, L. 1985a.
A performance study of system-level fault diag-

nosis algorithms (I). [n the 4th In ternattonal

Conference on Computers and Communica-
tions, 469–473.

DAHBURA, A., MASSON, G., AND YANG, C. 1985b.

Self-implicating structures for diagnosable sys-

tems. IEEE Trans. Comput. C-34, 8 (Aug.),
718-723.

DAHUBLJRA. A.. SABNANI. K.. AND HERY, W. 1989.
Spare’ capacity as a means of fault detection
and diagnosis in multiprocessor systems. IEEE
Trans. Comput. C-38, 6 (June), 881-891.

)AHBURA, A., SABNANI, K., AND KING, L. 1987, The

comparison approach to multiprocessor fault
diagnosis. IEEE Trans. Comput. C-36, 3 (Mar.),

373-378.

)AL CIN, M. 1984. Distributed diagnosis for com-

puting networks. Microprocess. Microprogram.
14, 139-144.

DAL CIN, M. 1982. A diagnostic device for large

multiprocessor systems. In the 12th In tern a-
tlonal IEEE Symposium on Fault-Tolerant
Computing. IEEE, New York, 357-360.

DAL CIN, M. 1980. Self-testing and self-diagnos-
ing multicomponent systems, In the 10thInter-
national IEEE Symposium on. Fault- Tolerant

Computzng. IEEE, New York.

DAL CIN, M. 1978. Performance evaluation of
self-diagnosing multiprocessing systems. In the
8th International IEEE Symposium on Fault-
Tolerant Computing. IEEE, New York, 59-64.

DAL CIN, M., AND DILGER, E. 1981. On the diag-
nosability of self-testing multi-microprocessor
systems. Microprocess. Microprogram. 7,
177-184.

DAL CIN, M., AND FLORMN, F. 1985. Analysis of a
fault-tolerant distributed diagnosis algorithm.
In the 15th International IEEE Symposium on

ACM Computing Surveys, Vol. 25, No. 2, June 1993

The Consensus Problem in Fault-Tolerant Computing “ 217

Fault-Tolerant Computing. IEEE, New York,
159-164.

DIWONIA, P., WITT, R., LAMPE, D., AND COLE, E.
1978. Micronet—A self-healing network for
signal processing. In the Government Microcir-
cuit Application Conference. (Nov.), 370–375.

DEO, N. 1974. Graph Theory with Applications
to Engineering and Computer Sczence. Pren-
tice-Hall, Englewood Cliffs, N.J.

DOLEV, D. 1982. The Byzantine generals strike

again, J. Alg. 3, 14–30.

DOLEV, D. 1981. Unanimity in an unknown and

unreliable environment. In the 22nd Sympo-
sium on the Foundations of Computer Science,
159-168.

DOLEV, D., AND REISCHUK, R. 1985. Bounds on

information exchange for Byzantine agree-
ment. J. ACM 32, 1 (Jan.), 191–204.

DOI,EV, D., AND STRONG, H. 1982. Authenticated

algorithms for Byzantine agreement. J. Alg. 3,
14-30.

DOLF,V, D., DWORK, C., AND STOCKMEYER, L. 1987.
On the minimal synchronism needed for dis-

tributed consensus. J. ACM 34, 1 (Jan.), 77–97.

DOLEV, D., LYNCH,N., PINTER,S., STARK,E., AND
WEIHL, W. 1986. Reaching approximate
agreement in the presence of faults. J. ACM
33, 3 (July), 499-516.

DWORK, C., LYNCH, N., AND STOCKMEVRR, L. 1988,

Consensus in the presence of partial syn-
chrony. J. ACM 35, 2 (Apr.), 288–323.

FEKETE, A. 1991. Asymptotically optimal algo-
rithms for approximate agreement. Dwtrzb,

Comput. 4, 9-29.

FELDMAN, P., AND MICALI, S. 1988. Optimal algo-

rithms for Byzantine agreement. In the 20th
ACM Sympos~um on Theory of Computing
ACM, New Yomk, 148–161.

FISCHER, M., AND LYNCH) N. 1982. A lower bound

for the time to assure interactive consistency.
Inf Process. Lett. 14, 4 (June), 183-186.

FISCH~R, M., LVNCH, N., AND MERRITT, M. 1986.

Easy impossibility proofs for distributed con-
sensus problems. Dwtrib. Comput. 1, 1,26–39.

FISCHER, M., LYNCH, N., AND PATERSON, M. 1985.
Impossibility of distributed consensus with one
faulty process. J. ACM 32, 2 (Apr.), 374-382.

FRIEDMAN,A. 1975. A new measure of digital

system diagnosis. In the 5th International
lEEE Symposium on Fault-Tolerant Comput-

ing. IEEE, New York, 167–169.

FRIEDMAN, A., AND SIMONCINI, L. 1980. System-

Ievel fault diagnosis. Computer (Mar.), 47-53.

FUJJ WAKA, H., AND KTNOSHITA, K. 1978. On the
(computational complexity of system diagnosis.
IEEE Trans. Comput. C-27, 10 (Oct.), 881-885.

FUJLWARA, H., AND OZA~I, H. 1979. On the diag-
nosability of systems with self testing units. In
the 9th International IEEE Symposmm on

Fault-Tolerant Computing. IEEE, New York,

157-160

FUSSELL, II , AND RANGARAJAN, S. 1989. Proba-
bilistic diagnosis of multiprocessor systems
with arbitrary connectivity. In the 19th Inter-
national IEEE Symposium on Fault-Tolerant
Computing. IEEE, New York, 560-565.

GUPTA, R., AND RAMAKRISHNAN, I. 1987. System-
Ievel fault diagnosis in malicious environ-
ments. In the 17thInternational IEEE Sympo-

sium on Fault-Tolerant Computing. IEEE, New
York, 184-189.

HAKIMI, S., AND AMIN, A. 1974. Characterization
of connection assignment of diagnosable sys-
tems. IEEE Trans. Comput. C-23, 1 (Jan.),
86-88.

HAKIMI, S., AND NAKAJIMA, K. 1984. On adaptive
system diagnosis. IEEE Trans. Comput. C-33,
3 (Mar.), 234–240.

HARARY, F. 1972. Graph Theory. Addison-Wes-

ley, Reading, Mass.

HARPER, R., LALA, J., AND DE~ST, J. 1988. Fault
tolerant parallel processor architecture over-

view. In the 18th Znternatzonal IEEE S.ynzpo-
sium on Fault-Tolerant Computmg. IEEE, New

York, 252-257.

HOLT, C., AND SMITH, J. 1981. Diagnosis of sys-

tems with asymmetric invalidation. IEEE
Trans. Comput. C-30, 9 (Sept.), 679-690.

HOSSEINI, S., KUHL, J., AND REDDY, S. 1985. On

self fault-diagnosis of the distributed systems.
In the 15th International IEEE Symposium on
Fault-Tolerant Computing. IEEE, New York,
30-35.

HOSSEINI, S., KUHL, J., AND REDDY, S. 1984. A

diagnosis algorithm for distributed computing

systems with dynamic failure and repair. IEEE
Trans. Comput. C-33, 3 (Mar.), 223-233.

HUANG, S., Xu, J., AND CHEN, T. 1989. Character-

ization and design of sequentially t-diagnosa-

ble systems. In the 19th International IEEE
Symposium on Fault-Tolerant Computmg.
IEEE, New York, 554–559.

KAMEDA, T,, TOIDA, S., AND ALLAN, F. 1975. A
diagnosing algorithm for networks. Irq! Contr.
29, 141-148.

KARUNANITHI, S., AND FRIEDMAN, A. 1977. System
diagnosis with t/s diagnosability. In the 7th
International IEEE Symposium on Fault-
Tolerant Computing. IEEE, New York, 65-71.

KAVIANPOUR, A., AND FRIEDMAN, A. 1978. Effi-

cient design of easily diagnosable systems. In
Proceedings of the 3rd USA-Japan Computer

Conference, 251-257.

KIM, K., AND YANG, S 1986. Fault tolerance
mechanisms in real-time distributed operating
systems: An overview. In the PacifLc Computer
Comnzunications ’85. Elsevier Science Publish-
ers, 239–248.

KLME, C. 1970. An analysis model for digital sys-

ACM Computing Surveys, Vol. 25, No. 2, June 1993

218 ● M. Barborak et al.

tern diagnosis IEEE Trans. Comput. C-19, 11
(Nov.), 1063-1073.

KJME, C. 1986. System diagnosis. In Fault Toler-

ant Computmg: Theory and Techniques. Pren-
tice-Hall, Englewood Cliffs, N.J.

KOHDA, T., AND ABJRU, K. 1988. A recursive pro-
cedure for optimally designing a hybrid fault
diagnosable system. In the 18th Internuttonal
IEEE Symposium on Fault-Tolerant Comput-

mg IEEE, New York, 272–277.
KOZLOWSKI,W., AND KRAWCZYK, H. 1991. A com-

parison-based approach to multicomputer sys-
tem diagnosis in hybrid fault situations. IEEE
Trans. Comput. 40, 11 (Nov.), 1283-1287

KREUTZ~R, S., AND HAKIMI, S. 1988. Distributed
diagnosis and the system user. IEEE Trans.
ConJput. 37, 1 (Jan.), 71-78.

KREUTZER, S., AND HAKJMJ, S. 1987. System-level
fault diagnosis: A survey, Mlcroprocess. Micro-
program. 20, 323-330.

KRELTTZER, S., AND HAKJMJ, S. 1983. Adaptive
fault identification in two new diagnostic mod-

els. In Proceedings of the 21st Allerton Confer-
ence on Commurucatlon, Control and Comput-
ing Umv. of Illinois, Urbana, Ill., 353–362.

KROL, T. 1991 A generahzation of fault-toler-

ance based on masking. Ph.D. dissertation,
Eindhoven Univ. of Technology, Eindhoven,
The Netherlands.

KROL, T. 1982. The ‘(4, 2)-Concept’ fault tolerant
computer In the 12th Znternatzonal IEEE
Symposium on Fault-Tolerant Cornputlng.
IEEE, New York. 49-54.

KUHL, J., ANDREDDY,S. 1981. Fault-diagnosis in
fully distributed systems. In the 1 Ith Interna-
tional IEEE Symposium on Fault-Tolerant
Computmg. IEEE, New York, 100-105

K~JHL, *J., mm REDDY, S. 1980a Distributed
fault-tolerance for large multiprocessor sys-
tems. In Proceedings of the 7th Annual Sympo-
.s[um on Computer Architecture, 23–30.

KtTHL, J., AND R’EDDY, S. 1980b. Some extensions
to the theory of system level fault diagnosis. In
the 10th International IEEE Sympcmum on
Fault-Tolerant Computing, IEEE, New York,
291–296.

LALA, J. 1986 A Byzantine resilient fault tol-
erant computer for nuclear power plant ap-
plications. In the 16th Intt?rnatlonal IEEE

Sympos~um on Fault-Tolerant Computing.

IEEE, New York, 338-343.

LALA, J., ALGER, L., GAUTHIER, R., AND DZWONCZYK,
M. 1986. A fault tolerant processor to meet

rigorous fadure reqcm-ements. In Proceedings
of the 7th ALLA-IEEE Digital Alum ics Systems
Conference. AIM-IEEE, New York, 555-562

LAJVJPORT, L. 1989. The part-time parliament
Dlgltal Tech. Rep. 49 (Sept. 1).

LANJ~ORT, L. 1983. Weak Byzantine generals
problem J. ACM 30, 3 (July), 668-676

LAMPORT, L., AND MELLIAR-SMITH, P. 1984.

Byzantine clock synchromzation. In the 3rd
ACM Sympos~um on Princ~ples of Dtstrtbuted
Computzng. ACM, New York, 68-74.

LAMPORT,L., SHOSTAK,R., AND PEASE, M. 1982.
The Byzantine generals problem. ACM Trans.
Program. Lang. Sy.st. 4, 3 (July), 382-401.

LARANJEIRA, L., MALTML M., AND JENEVEIN, R. 1991.
On tolerating faults in naturally redundant

algorithms. In the 10th Symposl um on Reliable
Distributed Systems (Piss, Italyj Sept.). IEEE

Computer Society, Los Alarnitos, Calif.,
118-127.

LEE, S., AND SHIN, K 1990. Optimal multiple
syndrome probabilistic diagnosis. In the 20th
International IEEE Symposwm on Fault-

Tolerant Computing. IEEE, New York,
324-331.

LIAW, C., Su, S , AND MALAIYA, Y. 1982. Self-diag-
nosis of non-homogeneous distributed systems.
In the 12th International IEEE Symposuim on
Fault-Tolerant Computing. IEEE, New York,

349-352.

LOMRARDI, F 1985. Diagnosable systems for fault
tolerant computmg In the 15th International
IEEE Sympo.wum on Fault-Tolerant Comput-

mg. IEEE, New York, 42–47.
MAEHLE,E., MORITZEN,K. ANDWDLL,K. 1986. A

graph model for diagnosis and reconfiguration
and Its application to a fault-tolerant multipro-
cessor system. In the 16th International IEEE
Symposium on Fault-Tolerant Computing.

(Vienna, Austria). IEEE, New York, 292-297.

MAENG, J., AND MALEK, M 1981. A comparison
connection assignment for self-diagnosis of
multiprocessor systems. In the 1lth In terna -
tlonal IEEE Symposuim on Fault-Tolerant

Computzng. IEEE, New York, 173-175.
MAHANE~-,S., AND SUHNHDER,F 1985. Inexact

agreement Accuracy, precision and graceful
degradation In the 4th ACM SymposZum on
the Principles of D~strLbuted Computing. ACM,
New York, 237-249.

MAHESHWARI, S., AND HAKIMI. S 1976. On mod-
els for diagnosable systems and probabilistic
fault diagnosis. IEEE Trans. Comput. C-25, 3
(Mar.), 228-236.

MALEK, M. 1991. Responsive systems: A mar-
riage between real-time and fault tolerance. In

the 5th G1 / NTG / G’MR Conference on Fault-
Tolerant Computzng Systems. In formatik-
Fachberichte, vol. 283. Springer-Verlag, Berlin,
1-17.

MALE~, M. 1990. Responsive systems: A chal-

lenge for the nineties. In Proceedings of Eu-
romzcro ’90, 16th Sympcm urn on Mlcroprocess -

mg and Mlcroprogramm ing. Microprocessmg
and Microprogramming 30, North-Holland,
Amsterdam, 9-16.

MALEK, M. 1980. A comparison connection as-
signment for diagnosis of multiprocessor sys-
tems. In Proceedings of the 7th Annual Sympo-

sium on Computer Architecture, 31–36.

ACM Computing Surveys, Vol 25. No. 2, June 1993

The Consensus Problem in Fault-Tolerant Computing ● 219

MALEK, M., AND LIU, K. 1980. Graph theory mod-

els in fault diagnosis and fault tolerance. In
Design Automation and Fault-Tolerant Com-

puting, vol. 3, 3, 4. Computer Science Press,
155-169.

MALLELA, S. 1980. On diagnosable systems with

simple algorithms. In Proceedings of the 1980
Conference on Information Science and Sys-

tems. Princeton Univ., Princeton, N. J., 545–549.

MALLELA, S., AND MASSON, G. 1980. Diagnosis

without repair for hybrid fault situations. IEEE
Trans. Comput. C-29, 6 (June), 461–470.

MALLF,LA, S., AND MASSON, G. 1978. Diagnosable

systems for intermittent faults. IEEE Trans.
Comput. C-27, 6 (June), 560-566.

MMEMCHUK,N., ANDDAHBURA,A. 1986. Optimal
diagnosable system design using full-difference
triangles. IEEE Trans. Comput. C-35, 9 (Sept),

837-839,

MENEZES, B., JOHNSON, A., MALEK, M., JENEVEIN,
R., AND YAU, K. 1992. Fault impact and fault
tolerance in multiprocessor interconnection
networks. In Quality and Reliabdity Enginee-

ring International, vol. 8, 485–500.

MEYSR, G. 1983. A diagnosis algorithm for the
BGM system-level fault model. In Proceedings
of the 21st Allerton Conference on Communtca-

tton, Control and Computing. Univ. of Illinois,
Urbana, Ill., 345-351.

MEYER, G., AND MASSON, G. 1978. An efficient

fault diagnosis algorithm for symmetric multi-
ple processor architectures. IEEE Trans. Com-

PUt. C-27, 11 (Nov.), 1059–1063.

MORITZEN, K. 1984. System level fault-diagnosis

in distributed systems. In the 2nd GI / NTG /
GMR Conference on Fault-Tolerant Computing

Systems. Informatik-Fachberichte, vol. 84.
Springer-Verlag, Berlin, 301-312.

MOSES, Y., ANI) WAARTS, O. 1988. (t+ 1)-round

Byzantine agreement in polynomial time. In

the 29th Symposiu?n on Foundations of Com-

puter Science, 246–255.

NAIR, R. 1978. Diagnosis, self-diagnosis and rov-
ing diagnosis. Dept. of Computer Science Rep.

R-823, University of Illinois, Urbana, Ill.

NAKAJIMA, K. 1981. A new approach to system
diagnosis. In proceedings of the 19th Allerton
Conference on Commumcatzon, Control and
Computing. Univ. of Illinois, Urbana, Ill.,
697-706.

PEASE, M., SHOSTAK, R., ANTD LAMPORT, L., 1980,
Reaching agreement in the presence of faults.
J. ACM, 27, 2 (Apr.), 228-234.

PEI,C, A. 1992. Optimal fault diagnosis in com-

parison models. IEEE Trans. Comput. 41, 6
(June), 779–786.

PELC, A. 1991. Undirected graph models for sys-

tem-level fault diagnosis. IEEE Trans. Com-

put. 4011 (Nov.), 1271-1276.

POWELL, D. 1992. Fault mode assumptions and

assumption coverage. In the 22nd IEEE Inter-

national Symposium on Fault-Tolerant Com -

putmg. IEEE, New York, 386-395.

PRADHAN, D., AND REDDY, S. 1982. A fault-
tolerant communication architecture for dis-

tributed systems. IEEE Trans. Comput. C-31,
9 (Sept.), 863-870.

PREPARATA, F., METZE, G., ANI) CHIEN, R. 1967.

On the connection assignment problem of diag-
nosable systems, IEEE Trans. Elect. Comput.
EC-16, 6 (Dec.), 848-854.

RABIN, M. 1983, Randomized Byzantine gener-

als. In Proceedings of the 24th Syrnposl urn on
Foundations of Computer Science, 403-409.

RAGHAVAN, V., AND TRIPATHI, A. 1991a. Improved
diagnosability algorithms. IEEE Trans Com-

put. 49, 2 (Feb.), 143-153.

RAGHAVAN, V., AND TRIPATHI, A. 1991b. Sequen-

tial diagnosability is CO-NP complete. IEEE
Trans. Comput. 40, 5 (May), 584-595.

RANGARAWUN, S., AND FUSS~I.L, D 1991. Proba-
bilistic diagnosis algorithms tailored to system
topology. In the 21st International IEEE SynL -
posium on Fault-Tolerant Computing. IEEE,

New York, 230-237.

RANGARAJAN, S. AND FUSSELL, D. 1988. A proba-
bilistic method for fault diagnosm of multipro-
cessor systems, In the 18th International IEEE
Symposutm on Fault-Tolerant Computing,
IEEE, New York, 278-283,

RANGARA.JAN, S., FUSSELL, D., AND MALEK, M. 1990.
Built-in testing of integrated circuit wafers.
IEEE Trans. Comput. 39, 2 (Feb.), 195-204,

RAYNAL, M. 1988. D1str[buted Algorithms and
Protocols. John Wiley, New York, 137-163.

RUSSELL, J., AND KJME, C. 1975a. System fault
diagnosis: Masking, exposure, and diagnosabil-
ity without repair. IEEE Trans. Comput. C-24,

12 (Dec.), 1115-1161.

RUSSELL, J., AND KIME, C. 1975b. System fault

diagnosis: Closure and diagnosability with re-
pair. IEEE Trans. Comput. C-24, 11 (Nov.),
1078-1088,

SAHEBAN, F., SIMONCXNI, L., AND FRIEDMAN, A. 1979.

Concurrent computation and diagnosis in mul-
tiprocessor systems, In the 9th International

IEEE Symposium on Fault-Tolerant Comput-
ing. IEEE, New York, 149–156.

SCHEINERMAN, E. 1987. Almost sure fault toler-

ance in random graphs. SIAM J. Comput. 16, 6

(Dec.), 1124-1134.

SCHLICHTING, R., AND SCHNEIDER, F. 1983. Fail-
stop processors: An approach to designing
fault-tolerant computing systems. ACM Trans.
Comput. ,’3ys. 1, 3 (Aug.), 222-238.

SCHMEICHEL, E., HAKIMI, S., OTSUKA, M., AND SULLI-
VAN, G. 1988. On minimizing testing rounds
for fault identification. In the 18th Interna-
tional IEEE Sympostum on Fault -Tokrant
Computing. IEEE, New York, 266-271.

SCHN~II)ER,F. 1990. Implementmg fault-tolerant
services using the state machine approach: A

ACM Computing Surveys, Vol. 25, No. 2, June 1993

220 “ M. Barborak et al.

tutorial. ACM Corrzput. Sure. 22, 4 (Dec.),
299-319.

SCHNEIDER, F. 1984. Byzantine generals in ac-
tion: Implementing fail-stop processors. ACM
Trans. Comput, Syst. 2, 2 (May), 145-154.

SENGUPTA, A., AND DAHBURA, A. 1989 On self-dl-
agnosable multiprocessor systems, Diagnosis by

the comparison approach. In the 19th Irzterrza-

tional IEEE Symposium on Fault-Tolerant

ComputZrzg. IEEE, New York, 54-61.
SHAMIR,A. 1979. How to share a secret. Com-

mun. ACM 22, 11 (Nov.), 612–613.

SHIN, K., AND RAMANATHAN, P 1987. Diagnosis of
processors with Byzantine faults. In the f 7th
International IEEE Symposium on Fault-
Tolerant Computing. IEEE, New York, 55–60

SIMONS, B., AND SPECTOR, A,, EDS. 1990, Lecture
Notes Ln Computer Science: Fault-Tolerant Dzs -
trzbuted Computmg, vol. 448. Sprmger-Verlag,

Berlin.

SMITH, J. 1979. Universal system diagnosis algo-
rithms. IEEE Trans. Comput. C-28, 5 (May),
374-378.

SOMANI, A., ANZ) AGARWAL, V 1992. Distributed
diagnosis algorithms for regular interconnected

structures. IEEE Trans. Comput. 41, 7 (July),
899-906.

SOMANI, A., AGARWAL, V., ANZ) AVIS, D. 1987. A
generalized theory for system level diagnosis
IEEE Trans. Comput. C-36, 5 (May), 538-546,

STAHL, M., BUSKENS, R., AND BIANCHINI, R. 1992.
On-line diagnosis in general topology networks.
In the IEEE Workshop on Fault-Tolerant Par-

allel and Dwtributed Systems. IEEE, New York,
114-121.

SULLIVAN, G. 1988. An O(t 3 + IEI) fault identifi-
cation algorithm for diagnosable systems. IEEE
Trans. Comput. 37, 4 (Apr), 388-397.

SULLIVAN, G 1987. System-level fault dlagnos-
ability m probabdistic and weighted models. In
the 17thInternational IEEE Sympos~um of
Fault-Tolerant ComputZng. IEEE, New York,
190-195,

SULLIVAN,G. 1984. A polynomial time algorithm
for fault diagnosability. In the 25th SYmpo-

sium on the Foundations of Computer Science.

148-156.

TOURG, S., PERRY, K., AND SRKANTH, T. 1987.
Fast distributed agreement. SIAM J Comput,
16, 445-458.

TURE& J., AND SHASHA, D. 1992 The many faces

of consensus in distributed systems. Computer
186 (June), 8-17.

TURPIN, R., AND CoAN, B. 1984, Extending binary

Byzantine agreement to multivalued Byzantine
agreement, In/ Process, Lett. 18 (Feb.), 73–76.

VAIDYA, N., AND PRADHAN, D. 1991. System level

diagnosis: Combining detection and location In
the 21st Internatiwzal IEEE Symposium on
Fault-Tolerant Computmg, IEEE, New York,

488-495,

WALTER, C. 1990. Identifying the cause of de-

tected errors. In the 20th International IEEE
Sympostum on Fault-Tolerant Computmg.
IEEE, New York, 48-55.

WENSLEY, J , LAMPORT, L., GOLDBERG, J., GREEN,
M , LEVITT, K., MELLIAR-SMITH, P., SHOSTAK, R ,
AND WEINSTOCK, C. 1978. SIFT: Design and
analysis of a fault-tolerant computer for am-
craft control. Proc IEEE, 66, 10 (Oct.),
1240-1255.

XU, J. 1991, The t/(n – 1)-dlagnosablhty and Its

applications to fault tolerance, In the 21st In-
ternatmnal IEEE Symposzum on Fault-Tolerant
Computing. IEEE, New York, 496-503.

YANG, C., AND MASSON, G. 1988a. Hybrid fault

diagnosability with unreliable commumcation
hnks. IEEE Trans. Comput. 37. 2 (Feb),
175-181,

YANG, C,, AND MASSON, G 1988b, A distributed

algorlthm for fault diagnosis in systems with

soft fadures IEEE Trans. Comput. 37, 11
(Nov.), 1476-1480.

YANG, C., AND MASSON, G. 1987, A new measure
for hybrid fault dlagnosabihty. IEEE Trans

Comput. C-36, 3 (Mar), 378-383.

YNG, C., &YD MASSOX, G 1986, An efflclent al-

gorithm for multiprocessor fault dlagnosls us-
ing the comparison approach. In the 16th Inter-

nat~onal IEEE SymposZum on Fault-Tolerant
Computzng (Vienna, Austria), IEEE, New York,
238-243,

YANG, C., AND MASSON, G, 1985a. A fault identifi-
cation algorithm for t, -diagnosable systems, In
the 15th Internat~onal IEEE SymposLum on
Fault-Tolerant Computzng. IEEE, New York,
78-83.

YANG, C., AND MASSON, G. 1985b. A generahza-

tion of hybrid faulty dlagnosablly. In the 15th
International IEEE S.vrnposumz on Fault-
Tolerant Computing. IEEE, New York, 36-41.

YANG, C., MASSON, G., AND LEONETTI, R. 1986. On

fault isolation and identltication m tl\tl-di-
agnosable systems, IEEE Trans. Comput, C-35,
7 (July), 639-643.

Recewed November 1991; final revision accepted December 1992,

ACM Computmg Surveys, Vol. 25, No. 2, June 1993

