
A new Checkpoint Mechanism for Real Time
Operating Systems

Santiago Rodrlguez, Antonio PSrez, Rafael MSndez
Depar tamento de Arqui tec tura y Tecnologla de Sistemas Inform~ticos

Universidad Polit@nica de Madrid, Spain
Email: {srodri, aperez, rmendez}@fi.upm.es

A b s t r a c t

This paper presents an overview of a proposed protocol to provide application-transparent
fault tolerant services in a Real Time Operating system. Fault tolerance is achieved by saving
checkpoints of the processes belonging to a real time application. This approach proposes the
extension of some real time system calls in order to save a recovery point when the user invokes
them. This protocol allows a real time application designer to know the temporal specifications
of every system call. Current real time applications are composed of several Real Time processes
and they have to share data by using interprocess communication facilities provided by the
operating system. The operating system has to take into account these interactions to ensure
the consistency of checkpoints. This is done by tracking the communications performed since
the last checkpoint and forcing dependent processes to perform a checkpoint at the same time.

1 I n t r o d u c t i o n

In order to improve computer reliability, sev-
eral checkpointing based fault tolerant multi-
processors have been proposed in recent years.
These approaches deal with transient and per-
manent errors for general purpose comput-
ing. Real Time environments put additional
requirements ([10]) because they are specified
by adding deadlines to every task in the sys-
tern. So, the computational correctness of the
system depends on both the logical results and
the ability to meet the specified deadlines.

Some current checkpoint techniques take ad-
vantage of the memory hierarchy ([2]) to store
active data (data accessed after the check-
point) in the highest levels of the memory hi-

erarchy and checkpoints in the lowest ones. In
Cache Aided Rollback Error Recovery ([1]) ac-
tive data are present in the computer registers
and cache and checkpoints are saved in main
memory. When a cache miss appears on a pro-
cessor and a line has to be replaced, a check-
point is done by storing the modified cache
lines into main memory.

Dual schemes use different mapping for the
device containing the active data and the re-
covery data (memory based schemes). These
ones use different physical memory locations
to store the active data and the checkpoints.
These schemes are more useful for real time
systems because either the application or the
real time operating system can decide when to
perform the checkpoint.

55

2 Objectives and Architec-
ture

Our objective is to design an application trans-
parent checkpoint protocol that will be per-
formed by the real time operating system. Its
main characteristics are:

• R e a l T i m e S u p p o r t . The system
has to support real time applications
composed for several tasks (Unix pro-
cesses) executing concurrently. Several
of these tasks perform communications
among them and data consistency ([3, 6])
stored in the checkpoint has to be en-
sured. A checkpoint established by a task
forces its dependent tasks (they have com-
municated with the former one) to estab-
fish a checkpoint.

• F a u l t m a s k i n g . The system has to be
able to mask a failure and it has to con-
tinue its execution without intervention of
the real time application.

• P o r t a b i l i t y and transparency . In or-
der to obtain application transparency,
the protocol is included in the operat-
ing system level. So, the execution of
the recovery actions (checkpoint and roll-
back) will be performed by the operating
system. Portabili ty is achieved by using
the Posix.lb s tandard ([5]) to include the
fault tolerant services.

• A Stab le dev ice will be used to store the
recovery data (checkpoint). This device
ensures that data stored on it will not be
corrupted by faults or external actions.

3 Protocol Analysis

As stated in previous sections, predictabili ty is
only achieved by controlling the instant when a
checkpoint is done. Furthermore, portabil i ty is
not achieved if the application has to perform

I : ~ Controlled I
System I

Actuators I Sensors [

Control I
System [

Log ~ ,' Operator

Figure 1: Physical Real Time Application
Structure.

special system calls to establish a checkpoint
or to perform a rollback. In our approach the
operating system has to decide when a check-
point has to be saved. Figure 1 shows the typ-
ical s t ructure of a real t ime application. A
real time application is closely related with its
environment: it reads data from a controlled
environment and modifies some parameters in
the controlled system. The system is usually
composed of several tasks executing in fixed in-
tervals (periodic tasks). They read data from
the sensors and write in the actuators. Ape-
riodic tasks ([9]), activated when an event ap-
pears, perform some write operations in the
actuators.

As established in the previous section, the
fault tolerant system is built by including new
facilities in a Posix. lb extension to a Unix sys-
tem, so da ta acquisition from the system and
the environment modification has to be done
by invoking system calls (read and write).

In our solution, additional code has been in-
cluded in some selected system calls to save
the state of a Unix process. These modifica-
tions are performed inside the operating sys-
tern. Predictabil i ty is ensured because the
temporal specification of the modified system
calls will include the storing of the checkpoints.

Table 1 shows the recovery actions per-
formed when a system call is invoked. If check-

56

System Call Operation
exit
fork

exec
write
open

creat
link

unlink
mknod
fchmod
chmod
fchown
chown
ioctl
fcntl

checkpoint deleting
checkpoint for

both processes
checkpoint deleting

checkpoint
checkpoint
checkpoint
checkpoint
checkpoint
checkpoint
checkpoint
checkpoint
checkpoint
checkpoint
checkpoint
checkpoint

mq_open checkpoint
mq_close checkpoint

mq_unlink checkpoint
sere_open checkpoint
sem_close checkpoint

sem_unlink checkpoint
shin_open checkpoint
shin_close checkpoint

shm_unlink checkpoint
aio_write checkpoint
lio_listio checkpoint

Table 1: System Calls and Recovery Actions.

pointing is frequently done, computer per-
formance will be decreased because a great
amount of temporal da ta will be stored. We
try to reduce the performance loss in two ways:
checkpoints are saved only at the end of a con-
trol cycle (the number of checkpoints is re-
duced) and only when a write is done (the
number of system calls affected are decreased).

Checkpoint deletion is done when a Unix
process changes the execution image or finishes
its execution. So, when a Unix process per-
forms an ezit system call, it will be removed

from the system process table, its assigned re-
sources are freed and the recovery informa-
tion has to be removed from the stable device.
Some other system calls do not remove a pro-
cess from the system, but change the execution
image of a process (exec system calls). This
case forces to remove the information stored
in the stable device because the process that
invoked this system call will change its execu-
tion image (text segment) and the data seg-
ment will be initialized with new data. On
the other hand, the stack segment will contain
the new stack (one subroutine activation) with
the program entry point. So, the checkpoint
stored for this process has to be deleted be-
cause the virtual addresses of the process after
executing the exec system call will have no re-
lation with the data stored at these addresses
before executing the system call.

Another system call related to process cre-
ation is the fork system call. This one creates
a new process in a Unix system and a recovery
point will be saved for both the creator process
(parent) and the new one. If a fault is detected
after finishing this system call the system will
need the first recovery point to rollback.

As stated above, the system will save a
checkpoint when it modifies some variables
in the controlled system. In a Unix sys-
tem this is done by executing write, aio_write
and lio_listio system calls. Other system calls
related with the I /O system such as open,
creat, link, etc. may modify the file sys-
tem and a checkpoint is done at the end of
these services. System calls related with mes-
sage queues do not save a checkpoint, except
the mq_open and mq_unlink calls. These sys-
tem calls modify the file system and a check-
point is done when the service is finished.
The same actions are performed for the equiv-
alent calls related to semaphores (sem_open
and sem_unlink) and shared memory segments
(shin_open and shm_unIink), close, mq_close,
sere_close and shin_close also perform a check-
pointing because they are freeing a resource

57

that is being used to track dependencies (see
section 4). When a checkpoint is done for one
process some others have to perform a check-
point to maintain data consistency. The de-
pendency s tudy is done in section 4.

3 .1 C h e c k p o i n t I n f o r m a t i o n

A checkpoint of a process has to contain the
information that allows the operating system
to be able to recover a consistent execution
state. The information that has to be saved in
a checkpoint is:

• User pages modified since the last check-
point. Every page that has been modified
since the last checkpoint is stored in the
stable device. So, an additional bit has to
be added for every entry in the page table
to keep track of every page modified since
the last checkpoint.

• Process table entry of the process. Some
additional information related to the pro-
cess is stored in the process table, i.e.
opened files, opened message queues,
scheduling state, etc. that are included
in the checkpoint.

• Internal operating system structures re-
lated to the process that is being saved
on the stable device. Because a pro-
cess can communicate with other ones the
structure related with message queues,
semaphores and shared memory has to be
stored into the stable device.

4 Dependency Tracking

A Real Time application is composed of sev-
eral tasks that communicate among them. A
solution to maintain consistency is shown in

• [7]. It allows to establish checkpoints in an
application transparent way. This solution
performs a global checkpoint and the operat-
ing system does not track dependencies. If

a process performs a checkpoint, the operat-
ing system forces every process in the system
to establish a recovery point, even when there
has not been communication among processes
since its last checkpoint. This approach is sim-
ple but introduces addit ional delays that may
involve deadline misses.

Another solution to avoid the dependency
tracking is to establish a checkpoint every t ime
a process communicates with another one.
This solution introduces high overhead in the
checkpointing of a process because it saves a
great amount of intermediate results.

Our solution tries to take into account the
communications established among Unix pro-
cesses belonging to one application and to
maintain the recovery da ta consistency by
checkpointing the dependent processes. These
dependencies will be generated when a pro-
cess uses some services provided by Pos ix . lb
to communicate processes: message queues,
Pos ix . lb semaphores, Shared Memory objects,
Pipes and FIFO's and Signals. System calls re-
lated with this kind of interprocess communi-
cation need to perform several actions to track
the dependencies. The complete s tudy is done
in [8] and as an example we will show the de-
pendency tracking for message queues (figure
2).

4.1 Message Queues Dependencies

P and p i are two processes performing
mq_send, mq_receive and mq_setattr system
calls. Let 's assume that at tl a recovery point
is saved for P and at t2 and t3 a checkpoint
is established for P~ (see figure 2.a). When
a checkpoint is done the private pages of the
process and the complete message queue state
is saved in the stable device. After P saves a
checkpoint in tl it performs a send or receive
operat ion in the queue (S/R), so the message
queue state changes from the state in tl (E)
to state Eq Assume that a fault is detected
in tRB and a rollback is needed for process P.

58

p ,

r . ,
S/R

E"
t 1

E ' "

• [:

t 2 S/R t 3

a)

Figure 2: Message

t RB . i S / R t RB

_i j
E"

t I

e ~

v

t 2

t4 E'"
l

SIR

b)

queues dependencies.

Then, the state of process P is restored to the
state in tz, but the message queue state is re-
stored to the last saved state in t3 (E"). If
the operation performed in S/R is a mq_send
system call, the result of the inconsistent roll-
back is that P sends the same message twice to
the queue. If the operation performed in S/R
was a mq_receive call P will try to receive a
message that will never be sent. To solve this
inconsistent rollback, it is necessary to force P
to establish a recovery point when P ' does it.

Figure 2.b shows a different situation, be-
cause the second checkpoint is not done for P '
in t3. At tRB a rollback is needed for process
P, then private da ta of P are restored to tl
and the state of the message queue is restored
at the state saved in t2 and P ' execution goes
on. This rollback is not consistent because P
will again execute an operation on the queue
(S/R) and if P performs a send call this mes-
sage will never be received, or if P performs a
receive call P will never receive a message that
has been sent.

The conclusion is that a process that has ex-
ecuted a mq_send, mq_receive or mq_setattr op-
eration on a message queue after establishing
a recovery point is dependent to every pro-
cess that has performed one of these primi-
tives. To keep track of the dependencies a mes-
sage queue modified flag is added per message
queue opened for a process. When a process
modifies a message queue (mq_send, mq_receive
or mq_setattr operation) this flag is set and
when a checkpoint has to be done for a pro-

cess, the operating system has to look for ev-
ery process that has modified the same mes-
sage queue. When the checkpoint has finished
every message queue descriptor is cleared.

5 E v a l u a t i o n R e s u l t s

In order to validate our approach we have de-
signed models that allow to compare the be-
haviour of our proposal with another current
policy (global checkpoint).

G l o b a l C h e c k p o i n t . There is no de-
pendency tracking among processes. If a
process is going to establish a checkpoint
every process in the system establishes a
checkpoint and no dependencies are gen-
erated.

P r o p o s e d M o d e l . As stated in section 4
dependencies among processes are tracked
to reduce the number of checkpoints that
have to be saved and the deadlines that
are not met in the real time application.
So, when a checkpoint is established for a
process in the system, only its dependent
processes are forced to establish a check-
point.

A comparative s tudy has been done for
both models building two simulation programs
based on queue networks for each of them.
Both models execute a real time application
composed by several processes. Two param-
eters are specified for every process in both

59

0 . 8 I I I J I

0.7

Forced
checkpoint 0.6

rate

0.5

Global Checkpoint - -

I I I 0 . 4 [- -
3 . 8 e - 06 7.6e - 06 1.5e - 05 3.1e - 05 6 . 1 e - 05

Page modification rate

Figure 3: Forced checkpoints rate in the global checkpoint model.

0.00012

0.8

0.7

Forced 0.6
checkpoint

rate 0.5

0.4

0.3
3.8e -- 06

X "X-
. × .

" ' ' , . . . × ×

+ + - -----------~
. + + +

Proposed (0.125) ©
Proposed (0.25) +
Proposed (0.50) []

Proposed (1.0) . x . -
I I I I

7 . 6 e - 06 1.5e - 0"5 3.1e - 05 6.1e - 05
Page modification rate

0.00012

Figure 4: Forced checkpoints rate in the proposed model.

models: activation period and computat ion
time for each activation of it. For our proposed
model a third parameter is included: a rate in
the range [0-1] that specify the probability of
establishing an interaction with another pro-

cess of the system.

The main aspect that will affect the perfor-
mance of the model is the number of check-
points that are forced to be done by a Unix
process because another one has to perform
a checkpoint. Figures 3 and 4 show the rate
of forced checkpoints in the global checkpoint
model and in the proposed model respectively.

Our model shows that even when the commu-
nication rate is the highest (1.0) the behaviour
is slightly better than with the global model.
Note that communication 1.0 means that ev-
ery process in the application communicates

every period with every process in the applica-
tion. This is a completely dependent applica-
tion and it can not be found in actual systems.
For the usual communication rates (from 10%
to 25%) the proposed model is quite bet ter
that the global one. Our approach reduces in
a 30% the forced checkpoints that generates

the global checkpoint model.

60

0.02 , , i ,

0.015

Lost
deadline 0.01

rate

0.005

0
3.8e - 06

Global Chec

7.6e - 06 1.5e - 05 3.1e - 05 6.1e - 05
Page modification rate

F igure 5: Lost deadl ines in the global checkpoin t model .

0.01 I I I

0.00012

0.008

0.006
Lost

deadline
rate 0.004

0.002

0
3.8e - 06

Proposed (0 .125)) (
Proposed (0.25) []
Proposed (0.5) -+.-
Proposed (1.0) <>

O

+

° .

. • - • . . • ~ [- '

7.6e - 06 1.5e - 05 3.1e - 05 6.1e - 05 0.00012
Page modification rate

F igure 6: Lost deadl ines in the p roposed model .

One of the main object ives of a real t ime

appl ica t ion is to meet the deadlines. Fig-

ures 5 and 6 show the lost deadl ines ra te for
the global and the new p roposed p ro toco l (for

communica t ion rates of 0.12, 0.25, 0.5 and

1.0). Some conclusions can be deduced f rom
b o t h figures:

• T h e behav iour of the p roposed model is

be t t e r even when the commun ica t i on ra te

is 1.0.

• T h e p roposed model does not in t roduce

any lost deadl ine when the communica-

t ion ra te is 0.0 (comple te ly independen t

process) . Th is ra te is not present in figure

6 because ac tua l sys tems has in terac t ions

among processes of the same appl icat ion.

• C o m m u n i c a t i o n ra tes used in an ac tua l

app l ica t ion goes f rom 10% to 25 % ([4]).

In these cases the new proposed model

lose only a 10% of the deadl ines lost in

the global checkpoin t model .

61

6 C o n c l u s i o n s

This paper has presented a protocol for estab-
lishing recovery points in a real time environ-
ment. It allows the real time application de-
signer to know the time used for executing a
system call including the time spent in say-
ing recovery points on a stable device. This
mechanism tracks dependencies and only the
necessary information is saved to optimize the
extra delay and the use of the stable device.

The performance studies are being done by
performing some simulations that compare our
model with the global checkpoint one. Some
results have showed that our model has better
performance metrics than global checkpoint-
ing:

The number of forced checkpoints is
highly reduced comparing with the global
model. So, the busy percentage of the sta-
ble device is reduced in the same rate for
the proposed checkpoint model.

The number of deadlines not met is re-
duced in a 90 %.

Even for extremely high communica-
tion rates the new proposed model be-
haviour is better than the global check-
point model.

R e f e r e n c e s

[1]

[2]

[3]

R. E. Ahmed, R. Frazier, and P. Mari-
nos. Cache-aided rollback error recovery
(CARER) algorithms for shared-memory
multiprocessors systems. In FTCS-20,
pages 82-88. IEEE, June 1990.

N. S. Bowen and D. K. Pradhan. Pro-
cessor - and memory - based checkpoint
and rollback recovery. IEEE Computer,
26(2):22-31, February 1993.

L. M. Censier and P. Feautier. A new
solution to coherence problems in mul-

[4]

[5]

[6]

[7]

[8]

[9]

[10]

ticache systems. IEEE Transactions on
Computers, 27(12):1112-1118, December
1978.

K. Fowler. Inertial navigation sys-
tem simulation program: Top level de-
sign. Technical Report CMU-SEI-89-TR-
38, Carnegie Mellon University, Pitts-
burgh, PA 15238, USA, January 1990.

IEEE. IEEE Standard for Information
Technology: Portable Operating Systems
Interface (POSIX 1.b). IEEE, 1994.

P.A. Lee and T. Anderson. Fault Toler-
ance: Principles and Practice. Springer-
Verlag, Wien, second edition, 1990.

K. Li, J. F. Naughton, and J. S. Plank.
Real-t ime concurrent checkpoint for par-
allel programs. A CM SIGPLAN Notices,
25(3):79-88, March 1990.

S. Rodrfguez. Sistema Operativo de
Tiempo Real con Tolerancia a Fallos me-
diante Puntos de Recuperacidn. PhD
thesis, Dpto. de Arquitectura y Tec-
nologfa de Sistemas Inform£ticos. Univer-
sidad Polit@cnica de Madrid, July 1996.

B. Sprunt, L. Sha, and J.P. Lehoczky.
Aperiodic task scheduling for hard real-
time systems. Real- Time Systems,
1(1):27-60, June 1989.

J.A. Stankovic. Misconceptions about
real-time computing. IEEE Computer,
21(10):10-19, October 1988.

62

