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A b s t r a c t  

This paper presents an overview of a proposed protocol to provide application-transparent 
fault tolerant services in a Real Time Operating system. Fault tolerance is achieved by saving 
checkpoints of the processes belonging to a real time application. This approach proposes the 
extension of some real time system calls in order to save a recovery point when the user invokes 
them. This protocol allows a real time application designer to know the temporal specifications 
of every system call. Current real time applications are composed of several Real Time processes 
and they have to share data by using interprocess communication facilities provided by the 
operating system. The operating system has to take into account these interactions to ensure 
the consistency of checkpoints. This is done by tracking the communications performed since 
the last checkpoint and forcing dependent processes to perform a checkpoint at the same time. 

1 I n t r o d u c t i o n  

In order to improve computer reliability, sev- 
eral checkpointing based fault tolerant multi- 
processors have been proposed in recent years. 
These approaches deal with transient and per- 
manent errors for general purpose comput- 
ing. Real Time environments put additional 
requirements ([10]) because they are specified 
by adding deadlines to every task in the sys- 
tern. So, the computational correctness of the 
system depends on both the logical results and 
the ability to meet the specified deadlines. 

Some current checkpoint techniques take ad- 
vantage of the memory hierarchy ([2]) to store 
active data (data accessed after the check- 
point) in the highest levels of the memory hi- 

erarchy and checkpoints in the lowest ones. In 
Cache Aided Rollback Error Recovery ([1]) ac- 
tive data are present in the computer registers 
and cache and checkpoints are saved in main 
memory. When a cache miss appears on a pro- 
cessor and a line has to be replaced, a check- 
point is done by storing the modified cache 
lines into main memory. 

Dual schemes use different mapping for the 
device containing the active data and the re- 
covery data (memory based schemes). These 
ones use different physical memory locations 
to store the active data and the checkpoints. 
These schemes are more useful for real time 
systems because either the application or the 
real time operating system can decide when to 
perform the checkpoint. 
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2 Objectives and Architec- 
ture 

Our objective is to design an application trans- 
parent checkpoint protocol that  will be per- 
formed by the real time operating system. Its 
main characteristics are: 

• R e a l  T i m e  S u p p o r t .  The system 
has to support  real time applications 
composed for several tasks (Unix pro- 
cesses) executing concurrently. Several 
of these tasks perform communications 
among them and data  consistency ([3, 6]) 
stored in the checkpoint has to be en- 
sured. A checkpoint established by a task 
forces its dependent  tasks (they have com- 
municated with the former one) to estab- 
fish a checkpoint. 

• F a u l t  m a s k i n g .  The system has to be 
able to mask a failure and it has to con- 
tinue its execution without intervention of 
the real time application. 

• P o r t a b i l i t y  and  transparency .  In or- 
der to obtain application transparency, 
the protocol is included in the operat- 
ing system level. So, the execution of 
the recovery actions (checkpoint and roll- 
back) will be performed by the operating 
system. Portabili ty is achieved by using 
the Posix.lb s tandard ([5]) to include the 
fault tolerant services. 

• A Stab le  dev ice  will be used to store the 
recovery data  (checkpoint). This device 
ensures that  data  stored on it will not be 
corrupted by faults or external actions. 

3 Protocol  Analysis 

As stated in previous sections, predictabili ty is 
only achieved by controlling the instant when a 
checkpoint is done. Furthermore,  portabil i ty is 
not achieved if the application has to perform 
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Figure 1: Physical Real Time Application 
Structure. 

special system calls to establish a checkpoint 
or to perform a rollback. In our approach the 
operating system has to decide when a check- 
point has to be saved. Figure 1 shows the typ- 
ical s t ructure of a real t ime application. A 
real time application is closely related with its 
environment: it reads data  from a controlled 
environment and modifies some parameters  in 
the controlled system. The system is usually 
composed of several tasks executing in fixed in- 
tervals (periodic tasks). They  read data  from 
the sensors and write in the actuators. Ape- 
riodic tasks ([9]), activated when an event ap- 
pears, perform some write operations in the 
actuators. 

As established in the previous section, the 
fault tolerant system is built by including new 
facilities in a Posix. lb  extension to a Unix sys- 
tem, so da ta  acquisition from the system and 
the environment modification has to be done 
by invoking system calls (read and write). 

In our solution, additional code has been in- 
cluded in some selected system calls to save 
the state of a Unix process. These modifica- 
tions are performed inside the operating sys- 
tern. Predictabil i ty is ensured because the 
temporal  specification of the modified system 
calls will include the storing of the checkpoints. 

Table 1 shows the recovery actions per- 
formed when a system call is invoked. If check- 

56 



System Call Operation 
exit 
fork 

exec 
write 
open 

creat 
link 

unlink 
mknod 
fchmod 
chmod 
fchown 
chown 
ioctl 
fcntl 

checkpoint deleting 
checkpoint for 

both  processes 
checkpoint deleting 

checkpoint 
checkpoint 
checkpoint 
checkpoint 
checkpoint 
checkpoint 
checkpoint 
checkpoint 
checkpoint 
checkpoint 
checkpoint 
checkpoint 

mq_open checkpoint 
mq_close checkpoint 

mq_unlink checkpoint 
sere_open checkpoint 
sem_close checkpoint 

sem_unlink checkpoint 
shin_open checkpoint 
shin_close checkpoint 

shm_unlink checkpoint 
aio_write checkpoint 
lio_listio checkpoint 

Table 1: System Calls and Recovery Actions. 

pointing is frequently done, computer  per- 
formance will be decreased because a great 
amount of temporal  da ta  will be stored. We 
try to reduce the performance loss in two ways: 
checkpoints are saved only at the end of a con- 
trol cycle (the number of checkpoints is re- 
duced) and only when a write is done (the 
number of system calls affected are decreased). 

Checkpoint deletion is done when a Unix 
process changes the execution image or finishes 
its execution. So, when a Unix process per- 
forms an ezit system call, it will be removed 

from the system process table, its assigned re- 
sources are freed and the recovery informa- 
tion has to be removed from the stable device. 
Some other system calls do not remove a pro- 
cess from the system, but  change the execution 
image of a process (exec system calls). This 
case forces to remove the information stored 
in the stable device because the process that  
invoked this system call will change its execu- 
tion image (text segment) and the data  seg- 
ment will be initialized with new data. On 
the other hand, the stack segment will contain 
the new stack (one subroutine activation) with 
the program entry point. So, the checkpoint 
stored for this process has to be deleted be- 
cause the virtual addresses of the process after 
executing the exec system call will have no re- 
lation with the data  stored at these addresses 
before executing the system call. 

Another system call related to process cre- 
ation is the fork system call. This one creates 
a new process in a Unix system and a recovery 
point will be saved for both  the creator process 
(parent) and the new one. If a fault is detected 
after finishing this system call the system will 
need the first recovery point to rollback. 

As stated above, the system will save a 
checkpoint when it modifies some variables 
in the controlled system. In a Unix sys- 
tem this is done by executing write, aio_write 
and lio_listio system calls. Other system calls 
related with the I /O  system such as open, 
creat, link, etc. may modify the file sys- 
tem and a checkpoint is done at the end of 
these services. System calls related with mes- 
sage queues do not save a checkpoint, except 
the mq_open and mq_unlink calls. These sys- 
tem calls modify the file system and a check- 
point is done when the service is finished. 
The same actions are performed for the equiv- 
alent calls related to semaphores (sem_open 
and sem_unlink) and shared memory segments 
(shin_open and shm_unIink), close, mq_close, 
sere_close and shin_close also perform a check- 
pointing because they are freeing a resource 
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that  is being used to track dependencies (see 
section 4). When a checkpoint is done for one 
process some others have to perform a check- 
point to maintain data  consistency. The de- 
pendency s tudy is done in section 4. 

3 .1  C h e c k p o i n t  I n f o r m a t i o n  

A checkpoint of a process has to contain the 
information that  allows the operating system 
to be able to recover a consistent execution 
state. The information that  has to be saved in 
a checkpoint is: 

• User pages modified since the last check- 
point. Every page that has been modified 
since the last checkpoint is stored in the 
stable device. So, an additional bit has to 
be added for every entry in the page table 
to keep track of every page modified since 
the last checkpoint. 

• Process table entry of the process. Some 
additional information related to the pro- 
cess is stored in the process table, i.e. 
opened files, opened message queues, 
scheduling state, etc. that  are included 
in the checkpoint. 

• Internal operating system structures re- 
lated to the process that  is being saved 
on the stable device. Because a pro- 
cess can communicate with other ones the 
structure related with message queues, 
semaphores and shared memory has to be 
stored into the stable device. 

4 Dependency  Tracking 

A Real Time application is composed of sev- 
eral tasks that  communicate among them. A 
solution to maintain consistency is shown in 

• [7]. It allows to establish checkpoints in an 
application transparent  way. This solution 
performs a global checkpoint and the operat-  
ing system does not track dependencies. If 

a process performs a checkpoint, the operat-  
ing system forces every process in the system 
to establish a recovery point, even when there 
has not been communication among processes 
since its last checkpoint. This approach is sim- 
ple but  introduces addit ional delays that  may 
involve deadline misses. 

Another solution to avoid the dependency 
tracking is to establish a checkpoint every t ime 
a process communicates with another one. 
This solution introduces high overhead in the 
checkpointing of a process because it saves a 
great amount  of intermediate results. 

Our solution tries to take into account the 
communications established among Unix pro- 
cesses belonging to one application and to 
maintain the recovery da ta  consistency by 
checkpointing the dependent  processes. These 
dependencies will be generated when a pro- 
cess uses some services provided by Pos ix . lb  
to communicate processes: message queues, 
Pos ix . lb  semaphores, Shared Memory objects,  
Pipes and FIFO's  and Signals. System calls re- 
lated with this kind of interprocess communi- 
cation need to perform several actions to track 
the dependencies. The complete s tudy  is done 
in [8] and as an example we will show the de- 
pendency tracking for message queues (figure 
2). 

4.1 Message Queues Dependencies 

P and p i  are two processes performing 
mq_send, mq_receive and mq_setattr system 
calls. Let 's assume that  at tl a recovery point 
is saved for P and at t2 and t3 a checkpoint 
is established for P~ (see figure 2.a). When  
a checkpoint is done the private pages of the 
process and the complete message queue state 
is saved in the stable device. After P saves a 
checkpoint in tl it performs a send or receive 
operat ion in the  queue (S/R), so the message 
queue state changes from the state in tl (E) 
to state Eq Assume that  a fault is detected 
in tRB and a rollback is needed for process P.  
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queues dependencies. 

Then, the state of process P is restored to the 
state in tz, but the message queue state is re- 
stored to the last saved state in t3 (E").  If 
the operation performed in S/R is a mq_send 
system call, the result of the inconsistent roll- 
back is that  P sends the same message twice to 
the queue. If the operation performed in S/R 
was a mq_receive call P will try to receive a 
message that  will never be sent. To solve this 
inconsistent rollback, it is necessary to force P 
to establish a recovery point when P '  does it. 

Figure 2.b shows a different situation, be- 
cause the second checkpoint is not done for P '  
in t3. At tRB a rollback is needed for process 
P,  then private da ta  of P are restored to tl 
and the state of the message queue is restored 
at the state saved in t2 and P '  execution goes 
on. This rollback is not consistent because P 
will again execute an operation on the queue 
(S/R) and if P performs a send call this mes- 
sage will never be received, or if P performs a 
receive call P will never receive a message that  
has been sent. 

The conclusion is that  a process that  has ex- 
ecuted a mq_send, mq_receive or mq_setattr op- 
eration on a message queue after establishing 
a recovery point is dependent to every pro- 
cess that  has performed one of these primi- 
tives. To keep track of the dependencies a mes- 
sage queue modified flag is added per message 
queue opened for a process. When a process 
modifies a message queue (mq_send, mq_receive 
or mq_setattr operation) this flag is set and 
when a checkpoint has to be done for a pro- 

cess, the operating system has to look for ev- 
ery process that  has modified the same mes- 
sage queue. When the checkpoint has finished 
every message queue descriptor is cleared. 

5 E v a l u a t i o n  R e s u l t s  

In order to validate our approach we have de- 
signed models that  allow to compare the be- 
haviour of our proposal with another current 
policy (global checkpoint). 

G l o b a l  C h e c k p o i n t .  There is no de- 
pendency tracking among processes. If a 
process is going to establish a checkpoint 
every process in the system establishes a 
checkpoint and no dependencies are gen- 
erated. 

P r o p o s e d  M o d e l .  As stated in section 4 
dependencies among processes are tracked 
to reduce the number of checkpoints that  
have to be saved and the deadlines that  
are not met in the real time application. 
So, when a checkpoint is established for a 
process in the system, only its dependent 
processes are forced to establish a check- 
point. 

A comparative s tudy has been done for 
both models building two simulation programs 
based on queue networks for each of them. 
Both models execute a real time application 
composed by several processes. Two param- 
eters are specified for every process in both 
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Figure 3: Forced checkpoints rate in the global checkpoint model. 
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Figure 4: Forced checkpoints rate in the proposed model. 

models: activation period and computat ion 
time for each activation of it. For our proposed 
model a third parameter is included: a rate in 
the range [0-1] that  specify the probability of 
establishing an interaction with another pro- 

cess of the system. 

The main aspect that  will affect the perfor- 
mance of the model is the number of check- 
points that  are forced to be done by a Unix 
process because another one has to perform 
a checkpoint. Figures 3 and 4 show the rate 
of forced checkpoints in the global checkpoint 
model and in the proposed model respectively. 

Our model shows that  even when the commu- 
nication rate is the highest (1.0) the behaviour 
is slightly better  than  with the global model. 
Note that  communication 1.0 means that  ev- 
ery process in the application communicates 

every period with every process in the applica- 
tion. This is a completely dependent applica- 
tion and it can not be found in actual systems. 
For the usual communication rates (from 10% 
to 25%) the proposed model is quite bet ter  
that  the global one. Our approach reduces in 
a 30% the forced checkpoints that  generates 

the global checkpoint model. 
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F igure  5: Lost  deadl ines  in the  global  checkpoin t  model .  

0.01 I I I 

0.00012 

0.008 

0.006 
Lost 

deadline 
rate 0.004 

0.002 

0 
3.8e - 06 

Proposed (0 .125) ) (  
Proposed (0.25) [] 
Proposed (0.5) -+.- 
Proposed (1.0) <> 

O 

+ 

° .  

. • - • . . • ~ [ - '  

7.6e - 06 1.5e - 05 3.1e - 05 6.1e - 05 0.00012 
Page modification rate 

F igure  6: Lost  deadl ines in the  p roposed  model .  

One of  the  main  object ives  of  a real  t ime 

appl ica t ion  is to meet  the  deadlines.  Fig- 

ures 5 and  6 show the  lost deadl ines  ra te  for 
the global and  the  new p roposed  p ro toco l  (for 

communica t ion  rates  of 0.12, 0.25, 0.5 and  

1.0). Some conclusions can be deduced  f rom 
b o t h  figures: 

• T h e  behav iour  of the p roposed  model  is 

be t t e r  even when  the commun ica t i on  ra te  

is 1.0. 

• T h e  p roposed  model  does not  in t roduce  

any lost deadl ine  when  the  communica-  

t ion ra te  is 0.0 (comple te ly  independen t  

process) .  Th is  ra te  is not  present  in figure 

6 because  ac tua l  sys tems  has in terac t ions  

among  processes  of the  same appl icat ion.  

• C o m m u n i c a t i o n  ra tes  used in an ac tua l  

app l ica t ion  goes f rom 10% to 25 % ([4]). 

In these cases the  new proposed  model  

lose only  a 10% of  the  deadl ines lost in 

the global  checkpoin t  model .  
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6 C o n c l u s i o n s  

This paper has presented a protocol for estab- 
lishing recovery points in a real time environ- 
ment. It allows the real time application de- 
signer to know the time used for executing a 
system call including the time spent in say- 
ing recovery points on a stable device. This 
mechanism tracks dependencies and only the 
necessary information is saved to optimize the 
extra delay and the use of the stable device. 

The performance studies are being done by 
performing some simulations that  compare our 
model with the global checkpoint one. Some 
results have showed that our model has better 
performance metrics than global checkpoint- 
ing: 

The number of forced checkpoints is 
highly reduced comparing with the global 
model. So, the busy percentage of the sta- 
ble device is reduced in the same rate for 
the proposed checkpoint model. 

The number of deadlines not met is re- 
duced in a 90 %. 

Even for extremely high communica- 
tion rates the new proposed model be- 
haviour is better than the global check- 
point model. 
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