
Distributed Separation of Concerns with Aspe ctComponents

Renaud Pawlak, Laurence Duchien, Gerard Florin, Laurent Martelli1, Lionel Seinturier2

Labor atoir eCEDRIC - 292, rue St Martin, Fr 75141 PARIS Cedex 03
1AOPSYS - 5, rue Br ownSé quard, Fr 75015 P ARIS

2L aboratoir eLIP6 - 4, place Jussieu, Fr 75252 P ARIS, Cedex 05

{p awlak,duchien,�orin}@cnam.fr, Laur ent.Martelli@aopsys.com, Lionel.Seinturier@lip6.fr

Abstract

This pap erpr esentsA-TOS, an aspect-oriented re�e ctivemiddleware for distributed pr o-
gramming. It pr ovides a very special kind of entities called aspect components that im-
plement glob al and transversal pr operties of (distributed) applications like security, fault
tolerance, transactions, and so on. Since the application code do esnot dir ectlyrefer to the
aspect components, A-TOS achieves clean and powerful separation of concerns base don
a wr appingcomposition model. Its adaptability and asp ect distribution cap abilitiesmake it
well suited to asp ect-oriented programmingin a distributed environment.

1. Introduction

During the last decade, needs for constructing applications, and especially distributed
ones, in a consistent, secure, controllable, and reusable w ayha veconsequently increased.
Object and component-based solutions lik e CORBA or DCOM provide frameworks that
allo wthe in teroperability of a set of distributed objects or components. However, because
those programming solutions and related methods focus on components assemble, they lack
a global vision of the �nal behavior and properties of so-constructed applications. As a
consequence, changing a global property � like an ordered calling policy � often means an
en tire re-thinking of the application.
Recent trends in computer science research are tightly coupled with this problem and

show that one of the most crucial issue in (distributed) software development consists in
�nding an accurate and consistent means to achieve separation of c oncerns within applica-
tion programs. This separation of concerns, praised by the Aspect Oriented Programming
approach (AOP) [11] should allo w the programmer to tackle more complex problems by
providing clear separation betw een the component (or base) program that provides the ba-
sic functional behavior, and some clearly identi�ed aspects of the program that a�ect the
base programperformance or seman tics in a systematic way [11].
In distributed applications, separation of concerns needs are coupled with some global

or transversal properties that spread over the application en tities, and consequently over
the machine boundaries. How ev er,with existing generic AOP languages, programming
distributed aspects can be quite tricky because aspects languages generally relate to local
base programen tities (e.g. classes).
T osolv ethis issue, w epresent A-TOS (stands for Aspect-TOS) [18], a general purpose

aspect-oriented re�ective middleware. A-TOS de�nes new kind of softw are entities for AOP

0-7695-0731-X/00 $10.00 � 2000 IEEE

called aspect components. Those special components can be seen as an extension of
regular components but with a global semantics. Indeed, their attributes and methods
specify some transversal properties on bunches of objects that are not necessarily localized
on the same host.
Section 2 discusses available techniques and choices for sep ar ation of concerns when pro-

gramming distributed applications. Section 3 presents the A-TOS solution and explains the
advan tagecompared to other sep ar ationof concerns means. Section 4 presents a real-life
distributed application example using asp ect components. Last section compares A-TOS to
some related approaches.

2. Providing distributed separation of concerns

2.1. AOP issues and de�nitions

AD-TOS intends to provide aspect-oriented features for distributed programs. It means
that it must achieve sep ar ation of concerns within a distributed environment for distributed
applications.
According to AOP guidelines [1], separ ation of concerns implies that the functional

program should not directly access w ell-identi�ed aspect-related primitives, lik e multi-
threading, broadcasting, or synchronization libraries. Instead of these direct accesses, the
programmer should be able to reverse the utilization dependence, so that the aspects have a
su�cient knowledge of the base application to be able to put the aspects semantics into the
application (in the AOP terminology, the aspect is said to be woven with the application).
Thus, since the functional code is independent from the aspect transversal semantics, it is
muc hmore reusable and adaptable. In AOP, a piece of base program knowledge is called
a join point and can be a function, an object, a class name, or an yinformation about the
base program.
However, several techniques to achieve separation of concerns compete. Subsequently, we

present some existing solutions and brie�y evaluate them regarding our constraints.

2.2. Basic constraints

When achieving aspect-oriented distributed programming, three main properties of the
aspects are especially needed:

� Adaptability: because of the natural en vironment variations of a distributed pro-
gram, an aspect that pro videsa global policy has to be easily removed and replaced
by another, and this, without stopping a system that is most of the time shared by a
great number of users.

� Distribution abilities: since they ha veto be applied on distributed applications,
aspects must also be able to be distributed. Thus, an object-like structuring of the
aspect code is desirable so that the aspect can be achieved by a set of interoperating
distributed objects.

� Easy composition: the aspect system must be able to easily handle the fact that
many di�erent aspects cohabit within the same system.

0-7695-0731-X/00 $10.00 � 2000 IEEE

Notice that adaptability and easy composition properties are also desirable for non-distributed
systems. How ev er, there are muc h more crucial (in fact they are mandatory) in distributed
systems (as the Internet) where environment is prone to change.

2.3. Three existing solutions for separation of concerns

2.3.1. Inheritance-based solutions: The �rst one is based on object-oriented frame-
works using inheritance and polymorphism (see, for instance, the visitor pattern [6]). This
tec hnique pro videsad ho c solutions and inherently presents some limitations due to the
w ell-known problem of inheritance anomaly [14] (because of this problem, an aspect-related
policy such as synchronization cannot be reused as is when subclassing). Moreover, complex
inheritance schemes are needed if one w ants the system to be �exible at run time, imply-
ing hardly understandable programs and bad distribution capabilities (since a lot of classes
w ould need to be distributed).

2.3.2. T ransformative solutions: A second kind of solution is known as transformative
solutions (based on program transformation or in terpretation). This solution consists in
implementing an aspect as a meta-program (or an in terpreter) that is applied to the base
program to produce a new program with new semantics as an output. T ransformative
solutions can be sub-classed in three variants.

� Inte grated transformative solutions that add into the language some speci�c keywords
or instructions to parameterize the language in terpreter regarding an aspect (e.g.
F ortran HPF annotations, thesynchronized keyword in Java, pragmas in C/C++).

� Composition-based transformative solutions where code transformations are especially
speci�ed as existing code composition statements (Subject-Oriented Programming [9],
the AspectJ language [2]).

� R e�e ctive1 transformative solutions where the structure and/or syntax of the language
is rei�ed within a meta-model, most of the time at the compile time. Examples of this
tec hnique are OpenC++v2 [5], OpenJava [17] (for a structural approach), and Iguana
[8] (for a more syntactical approach).

Despite those solutions are really e�cient, it is quite tricky to compose di�erent aspects
(because they can transform the base program in suc ha w aythat another aspect will not
be able to apply consistently to the output program). Moreover, distribution and adapta-
tion capabilities are very w eaksince it is di�cult in practice to apply the transformative
algorithm to a running distributed program.

2.3.3. Event-based solutions: Last kind of solutions are event-base d solutions. Those
kind of systems link the functional code to the aspect code b y binding some aspect entry
points to w ell-de�nedbase-program even ts lik e method invocation, attribute accessing, or
obje ctmigration. Event-based solutions for separation of concerns are b y essence re�ec-
tive since the even tsgive to the receiver some indications about what is happening in the
system so that the receiver can �reason� about it, consistently to a re�ective system def-
inition. As a consequence, those solutions are widely used in metaobject-based re�ective

1A re�ectiv e system is a system that is able to reason about itself by accessing (introspection) and
modifying (intercession) c hosen parts of its internal structures.

0-7695-0731-X/00 $10.00 � 2000 IEEE

languages (in [4] even ts are sent to the metaobject on message arrival, obje ctcreation, and
attribute ac cessing), metaclass-based re�ective languages (in OpenC++v2, events are sen t
to the metaclasses when the parser recognizes special statements like attributes or methods
declarations) and re�ective operating systems.
Metaobject-based solutions are well �tted to the constraints enumerated in 2.2, and to

distributed separation of concerns. However, most of them provide very poor introspection
an intercession features, implying limited and somewhat insu�cient re�ective means.
Metaclass-based solutions provide a muc hmore powerful meta-programming framework

that allo wsdeep structural changes of the base program. How ev er,because those changes
are centralized in metaclasses (this means that the base-program scope control is the class
and not the object), they are not suitable for a distributed environment (where you need a
control per-object).

3. A-TOS solution: the aspect components

Subsequently, we presen t our solution for separation of concerns and show that it meets
the requirements de�ned in section 2. This solution introduces aspect components that are
used to implement aspects within (distributed) object-oriented applications.

3.1. Aspect component classes

In the same way regular objects are described in classes,asp ect components are described
in aspect component classes which is a specialization of a regular class but with a global
semantics (see �gure 1). Thus, an asp ect component class (ac-class for short) can de�ne slots
and functions thatdescribe global properties or behaviors that can be pushed into a given
application. Slots values should also contain the join points (see section 2.1) descriptions
so that the aspect component will be able to wea ve with the base program.
One important point of ac-classes (see �gure 1) is that they can contain other classes

or objects (it is also a container). Thus, global classes and wrapper classes (see the next
sections for details) used to de�ne an aspect semantics are de�ned within the ac-class. F or
instance, if we need to add an aspect that implements persistence, we de�ne a Storage class
that is part of the Stor ageac-class.
Aspect component classes should at least de�ne tw o functions:

1. init(join_points): this function initializes the aspect component when it is created
(it is automatically called when a new ac-instance is created). In general, init sets the
join points values so that they are not hard-coded within the aspect component code
and apply to several base programs.

2. weave(target_module): this function is used to apply the aspect semantics to a base
program (that is usually contained in the target module). The weaving process mostly
consists in wrapping w ell-chosen objects of the base program with some wrappers
de�ned in the aspect component.

3.2. Programming ac-classes: wrappers and structural re�ection

A-TOS combines metaobject and metaclass solutions in order to keep the adaptability and
distribution abilities provided by the former and the pow erfulre�ective features provided

0-7695-0731-X/00 $10.00 � 2000 IEEE

global_slot

name

functions section

slots section

contents section

regular class

wrapper class

wrapping function
(aspect entry point)

event catcher

init(join_points)
weave(target_module)

ExampleAspect

centralizedService()

transversal_function()

transversal_slot

CentralizedServer

ExWrapper {CW}

Figure 1. An aspect component class.

by the latter.
Thus, A-TOS �rst key feature when programming are wrappers that are based on run-

time message arrival rei�cation (to be related to metaobject based solutions). Wrappers
are used at runtime to change the base program semantics by adding some code before and
after the original code. Since it is an even t-based wrapping tec hnique, wrappers can be
easily added and removed at runtime and th us provide adaptability and �exibility. When
wrapping the base objects with wrappers, an ywrapping function is said to be an entry
point and is automatically associated with an aspect component event catcher (see the
transversal_function in �gure 1).
A-TOS second key feature is metaclass-based structural re�ection (i.e. class de�nitions

are read/write available in metaclasses [7][10]) that allows aspect components to easily
access and modify the base program entities de�nitions. This feature is mostly used during
the w ea ving/unw ea vingprocess to get some precise information on the base program and
to transform and/or wrap the base objects.

3.3. Composition

Many wrappers (from several aspects) can wrap a base object. Thus, when a function of
this base object is called, all the wrapping functions are called before it and can perform
some treatments lik e tracing, authentication, and so on. Everything happens as if the
message goes througha set of functions:
message ! authentication ! synchronization ! persistence ! base function
One of the in teresting point in A-TOS, is that it provides some support for wrappers

composition when you use several wrappers towrap the same base function. Indeed, since
the wrappers are sequentially called, the composition problematic is tightly linked to the
calling order of the wrappers. F or example, a wrapper that is used for authentication must
always be called before a wrapper that implements persistence. If not, the base object
changes might be saved on the disk even if the authentication fails.
T ohelp solving this issue, A-TOS provides a framework that automatically orders the

wrapper regarding a wrapper classi�cation (wrappers can be mandatory and called �rst,
conditional and called second, or exclusive and called last) and some calling priorities (when

0-7695-0731-X/00 $10.00 � 2000 IEEE

the order is not automatically decidable). F or further insights on the solution, we encourage
the reader to take a look at [15] where this feature is discussed.

3.4. Example

Let's take the example of a Stack class de�ned as follows2 (see the A-TOS tutorial at [18]
for a complete example):

Program new BaseProgram {

Class new Stack {

slot list elts {}

func void push {elt} { ... }

func elt pop {} { ... }

} }

% Stack new s

% s push 1

% s pop ==> 1

Suppose now that you need to limit the number of elements in the stack in some particular
situations. How ev er, for reusing and simplicity sake, you would like to keep the Stack code
clean from an ychange. You also do not want to multiply the stac ksubclasses for suc ha
kind of problem that does not re�ect a lot of interesting functional points.
Thus, a simple and clean w ayto add a length control feature is to program an aspect

component that is used to check the 'elts' length.

Aspectcomponent new LengthControl {

slot Object object_to_control

slot Func func_to_control

slot Slot slot_to_control

initializes the join points...

func void init {o f s} { # sets the slots values... }

called by the ac-user weaving is needed...

func void weave {baseprog} {

creates a new wrapper...

LengthControlWrapp er new lcw

the new wrapper wraps the function to control...

lcw wrap $object_to_control {{controlLength $func_to_control OW 20}}

}

defines the wrapper class...

WrapperClass new LengthControlWrapper {

the default maximum length is 2...

slot integer max_length 1

'reflect' calls the wrapper object ($component)

func scalar controlLength {} {

if {[llength [$component slotValue $slot_to_control]] < $max_length } {

this reflect $component $caller_component $func_name $func_args

} else { error "Stack is full!" }

} } }

2Here is a brief TOS syntax o verview. 'X new x [<de�nition>]' creates a new object 'x' that is an
instance of 'X'. 'slot <type> <name> <default_value>' and 'func <type> <name> <b ody>' declare
new slots and functions in a class, wrapper class, or ac-class de�nition. '<object> <func_name> [<args>]'
calls a function on an object. '$<slot_name>' gets a slot v alue. ' [<expr>]' replaces the expression by
its evaluation within the current con text. ' ;' is the command separator.

0-7695-0731-X/00 $10.00 � 2000 IEEE

Y oucan no winstantiate it and w ea veit into the base program. Notice that you give the
join points to the aspect component so that it can weave properly (on an object called 's'
and control the 'elts' slot when 'push' is called).

% LengthControl new lc {s push elts}

% lc weave BaseProgram

Finally, the 'lc' aspect component changes the 's' stack behavior as follows:

% s push 1

% s push 1 ==> error: Stack is full!

4. Aspect components application: a concrete example

4.1. The agenda at a glance

Let us imagine an agenda application. This application program can be composed of
three classes: a User class, that de�nes the users of the agenda objects, an A gendaclass
that implements all the functions to make some appointments with other users, and an
Appointment class thatde�nes the appoin tment times and members. Although this appli-
cation semantics seem clear at �rst sight, a deeper analysis shows that some aspects can be
quite complex and prone to change:

� Security. Shall w eimplement a Capability-Based system (e.g., Amoeba [16])? A
Kerberos-like authentication algorithm [12]?

� Distribution. Is it a local application? Do we need some client-serv er?Do we need
some replication algorithm for fault-tolerance or performance matter?

� Appointment agreement. How do users agree when making an appointment? Do
they send an email to notify each other? What happens when a user makes an ap-
pointment with a user that already has an agreement with another user at the same
time?

A major advan tagebrought b y the AOP is to let the programmer think about the base
problem in a totally independent way from the aspects ones. Thus, we can easily implement
a �rst prototype of the application without even addressing the issues mentioned above. In a
second time, the di�erent aspect components (each one de�nes a global/distributed solution
for one of the three issues) can be put into (woven with) the base program without changing
a line of code.

4.2. Security and appointment aspect components

Figure 2 shows an implementation of an agenda application with tw osimple aspects
(described in aspect component classes): a Kerberos-based authentication aspect and an
appointment agreement policy. We can see that the authentication algorithm can be de-
scribed in a totally independent w ay from the base program.The KeyServer class (that is
a sole instance global class) knows global information: the private key (or password)of all
the clien ts(identi�ed by login) and of all the applications (identi�ed by name) � to one
private key corresponds one application or one client. The authentication algorithm can be
found in [12].

0-7695-0731-X/00 $10.00 � 2000 IEEE

common class wrapper class aspect component class

common link wrapping link event catcher

common program

function call events

init()init(client_class, application_class, funcs_to_authenticate)

key_server ; client_class ; application_class ; funcs_to_authenticate

User

name

Apointment

stop_time
start_time

private_keyprivate_key

KeyServer

getKeySession(client, application)

isValid(key_session, client, application)

1

name

ApplicationWrapper {CW}

* Agenda

cancelAppointment(t)
makeAppointment(t, users)

owns

with

contains *1

startAuthentication()

1

login
key_session

ClientWrapper {CW}

authenticate()

 $user sendMail "$caller is
 foreach user $funcargs(2) {

 }
}

 with you at $funcargs(1)"
 making an appointement

emailUsers() {

EmailNotifierWrapper {EW}

Security Appointment

weave(target_program) weave(target_program)

Agenda

Figure 2. The agenda example, and its security and appointment aspects.

To wea ve this algorithmwith the A gendaprogram, w e simply need to wrap all theUser
instances with ClientWrapper instances and all the A gendainstance with ApplicationWrap-
per instances. In A-TOS, this weaving policy is programmedin the weave function:

SecurityAspect::weav e {target_program} {

for each object in the program we weave...

foreach curobj [$target_module objects] {

switch [$curobj class] {

if this object is of a client type (defined by a join point in init)...

$client_class {

then wrap it with the appropriate wrapper...

[new ClientWrapper {}] wrap $curobj {}

}

if this object is of the application type...

$application_class {

wrap the functions to authenticate...

[new ApplicationWrapper {}] wrap $curobj

{{startAuthentica tion $funcs_to_authenticate OW 0}}

} } } }

By choice, the appointment agreement asp ect component class is even more simple. In fact,
w e only decide to email all the participatingusers of a newly created appoin tment. As one
can expect, the w ea vingpolicy of the aspect component consists in wrapping the A genda
instances with a (unique) EmailNoti�erWrapper instance.
Finally, the following program runs a new agenda application and modify its semantics,

�rst by adding authentication features and second by adding an email noti�cation when a
new appointment is created:

Agenda run [Module new agenda_program]

0-7695-0731-X/00 $10.00 � 2000 IEEE

SecurityAspect weave agenda_program

AppointmentAspect weave agenda_program

4.3. Adding distribution with D-TOS

init()

server_host = "ha"
client_hosts = {"hc1" "hc2" "hc3"}

remoteCall()

remote_host

ProxyWrapper {OW}

ClientServerDistributionAspect

weave(target_program)

Figure 3. A client/server distribution aspect component class.

T oful�ll the previous example and present all the A-TOS capabilities w eneed to add
a Distribution asp ectcomponent and w ea veit with the Agenda program. The D-TOS
extension pro videssome useful functionalities lik e object migration/copying services and
some common wrappers that are very useful to seamless distributed programming. Thus,
an aspect component for distribution is very easily programmable as long as the distribution
scheme is simple (of course, sep ar ation of concerns does not reduce the inherent complexity
of an aspect � it reduces the aspect program in tegration complexity).
F or example, we can choose a simple client/server distributed architecture as follows:

� the agenda is centralized on a unique host ha,

� clien ts (users) are distributed on hostshc1, hc2, and hc3.

For this very simple scheme, w eonly need a proxy wrapper (proxies are a very powerful
model for distribution) that can make the A genda class remotely used from the clients
hosts. The Pr oxyWrapper is one of the useful wrapper furnished by D-TOS (see the D-TOS
tutorial at [18]). Thus, a DistributionAspect component would contain ProxyWrapper and
de�ne the init/weave functions (see �gure 3). We shortly de�ne the we ave function (for
readability reasons we hard-code Agenda and User join points).

DistributionAspect:: we ave{target_module} {

if {[Dtos localHost] == $server_host} {

we create a new proxy wraper

set a_proxy [ProxyWrapper new {} {set remote_host=$serve r_ host}]

we wrap the unique instance of the Agenda class with the wrapper

$a_proxy wrap [Agenda instances] {{remoteCall * OW 0}}

we wrap the User instances (for simplicity, we suppose there

is 1 user on each site, called aUser[1,2,3])

set i 1

while {$i <= 3} {

set a_proxy [ProxyWrapper new {} {set remote_host=hc$i}]

$a_proxy wrap aUser$i {{remoteCall * OW 50}}

0-7695-0731-X/00 $10.00 � 2000 IEEE

incr i

}

we copy the program on each client host

Dtos copy $target_module hc1 hc2 hc3

} else {

copy all on 'ha' and do the same

} }

Figure 4 shows the running application resulting from this simple aspect component (woven
with �ClientServerDistributionAspect weave agenda_program�) (for simplicity sake, we have
omitted the security aspect � despite there would be no problem composing it). It is quite
impressive because the copy function duplicates all the needed objects and modules that
are the instances of the classes described in �gure 2. On the clien tssides, an ycall to the
agenda is maderemote b y the wrapper, and similarly, on the server side, any call made to
the users is made remote and directed to the proper client host.
In �gure 4, we can see what happens when aUser1, makes an appointment with aUser3.

aProxyWrapper

anAgenda

aProxyWrapper

anAgenda

aUser2 aUser3

1

2

aProxyWrapper aProxyWrapper aProxyWrapper

anAgenda

3

4

6

5

7

8

aUser1 aUser2 aUser3

anEmailNotifierWrapper
ha

hc2 hc3hc1

anAgenda

aUser1

aProxyWrapper

an execution step

client channel remote objectlocal object wrapper

wraps
host/site

server channel

message

Figure 4. The agenda application objects and wrappers after applying (weav-
ing) the client/server distribution aspect component.

1. aUser1 sends <makeAppointment '10H00' 'aUser3' to anAgenda>

2. anAgenda is wrapped by aProxyWrapper) the message arrival is catched

3. aProxyWrapper sends the message do the A genda instance located on ha (through
the TOS Communication Protocol built on TCP soc kets� provides client/server
communication channels)

4. anEmailNoti�erWrapper catc hes the message

5. It sends a noti�cation message to aUser3

0-7695-0731-X/00 $10.00 � 2000 IEEE

6. aProxyWrapper catc hes the message

7. It sends it to aUser3 located on hc3

8. anEmailNoti�erWrapper actually makes the appointment

5. Related work

Metaobject-based approaches can be closely related to the A-TOS approach. Indeed,
A-TOS wrappers can be seen as metaobjects as de�ned in [4]. However, A-TOS framework
is only based on message rei�cation and allows the user to de�ne its own rei�cation interface
(contrary to metaobjects). This makes the A-TOS wrappers muc h more easy to specify and
understand.
A-TOS wrappers can also be compared to the Composition Filters (CF) approach [3]

since an A-TOS message-event-based wr apper can be seen as a {message �lter + internal
object} couple. By separating inc oming/outgoing message �lters and the objects where
they dispatch the messages, CF can be seen as a more general and �exible approach, but,
since wrappers can also easily be used as �lters, w eclaim that the tw oapproaches are
fundamentally equivalent.
Another very close approach is the w orkon aspectual components [13]. They pro videa

larger-than-class aspect structure than can be seen as aspect components. However, since
they do not use an even t-based framework, they are less �exible than our approach.
Generally speaking, A-TOS real addins to those approaches are an easy class-level spec-

i�cation possibility (see �gure 2) and the asp ectcomponents described in section 4.

Conclusion and future work

In this paper, w epresent A-TOS, a re�ective framework for aspect-oriented distributed
programming based on aspect components. Aspect components are some special kind of
objects that can modify the base program objects semantics b ymaking them wrapped by
wrappers. They represent some global and transversal properties of the baseprogram that
can be centralized (mostly in regular objects) or distributed (mostly in wrappers) depending
on the asp ectcomponent speci�cation (i.e. its aspect component class de�nition).
Therefore, w ebelieve that the Aspect Component approach proposed by A-TOS can

be easily coupled or in tegrated in class-level speci�cation formalisms lik e UML to allow
distributed (and also non-distributed) application designers to actually easily handle sepa-
ration of concerns and thus greatly enhance industrial software quality. Since they can be
added and removed at runtime, aspect-components-based systems, languages and method-
ologies, w ouldallo wcomplex and adaptable distributed softw aredevelopment with better
understandable/maintenable code and shorter re�nement cycles.
A-TOS is a prototype of such a system and is available at [18]. It implements in a naive

manner most of the features described in this article. It can be seen as a �rst step to an
aspect component based tool suite.

0-7695-0731-X/00 $10.00 � 2000 IEEE

References

[1] AOP. Aspect Oriented Programming home page.
http://www.parc.xerox.com/csl/projects/aop/.

[2] AspectJ. AspectJ home page.
http://aspectj.org/.

[3] CF. TRESE project homepage.
http://wwwtrese.cs.utwente.nl/.

[4] S. Chiba. Open C++ release 1.2 programmer's guide. T echnical Report 9303, Depart-
ment of Information Science, University of Tokyo, 1993.
ftp://ftp.is.s.u-tokyo.ac.jp/pub/techreports/TR93-03-letter.ps.Z.

[5] S. Chiba. A metaobject protocol for C++. In Pr oceedingsof OOPSLA'95, volume 30
of SIGPLAN Notices, pages 285�299. ACM Press, October 1995.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
R eusableObject-Oriented Software. Addison-Wesley, 1995.

[7] A. Goldberg and D. Robson. Smalltalk 80: The L anguage. Addison-Wesley, 1989.

[8] B. Gowing and V. Cahill. Meta-Object Protocols for C++: The Iguana Approach. In
Proceedingsof R e�e ction'96, 1996.

[9] W. Harrison and H. Ossher. Subject-oriented programming (a critique of pure object).
In Pr oceedingsof OOPSLA'93. ACM Press, 1993.

[10] G. Kiczales, J. des Rivieres, and D.G. Bobrow. The Art of the Metaobject Proto col.
MIT Press, 1991.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.M. Loingtier, and
J. Irwin. Aspect-oriented programming. In Pr oceedingsof the ECOOP'97, 1997.

[12] J. Kohl and C. Neuman. The kerberos net work authenti�cation service (v5). IETF
Network Working Group, R equestfor Comments 1510, September 1993.

[13] Karl Lieberherr, David Lorenz, and Mira Mezini. Programming with aspectual com-
ponents. T echnicalreport, Northeastern University's College of Computer Science,
1999.

[14] S. Matsuoka and A. Yonezaw a.Analysis of inheritance anomaly in object-oriented con-
current programming languages. In Resear ch Directions in Concurrent Object-Oriented
Programming, pages 107�150. MIT Press, 1993.

[15] R. P awlak,L. Duchien, and G. Florin. An automatic aspect weaver with a re�ective
programming language. In R e�ection'99, July 1999.

[16] A.S. T anenbaum, S. Mullender, and R. van Renesse. Using sparse capabilities in a
distributed operating system. In Pr oceedingsof the 6th European Conference on Distr.
Comp. Sys., 1986.

[17] M. Tatsubori and S. Chiba. OpenJava 1.0 API and Sp eci�cation. Programming Lan-
guage Lab., University of Tsukuba, 1998.
http://www.softlab.is.tsukuba.ac.jp/~mich/openjava.

[18] TOS. The TOS project main page.
http://cedric.cnam.fr/personne/pawlak/tos.html.

0-7695-0731-X/00 $10.00 � 2000 IEEE

