
Aspect-Oriented Programming
with C# and .NET

Wolfgang Schult and Andreas Polze
Hasso-Plattner-Institute at University Potsdam

{wolfgang.schult|andreas.polze}@hpi.uni-potsdam.de

Abstract

Almost a year ago, Microsoft has introduced the .NET
architecture as a new component-based programming
environment, which allows for easy integration of
classical distributed programming techniques with Web
computing. .NET defines a type system and introduces
notions such as component, object, and interface, which
are building blocks for distributed multi-language
component-based applications.

As many other component frameworks, .NET mainly
focuses on functional interfaces of components. Non-
functional aspects of components, such as resource usage
(CPU, memory), timing behavior, fault-tolerance, or
security requirements are currently not expressed in
.NET’s component interfaces. These properties are
essential for building reliable distributed applications
with predictable behavior even in cases of faults.

Within this paper, we discuss the usage of aspect-
oriented programming techniques in context of the .NET
framework. We focus on the fault-tolerance aspect and
discuss the expression of non-functional component
properties (aspects) as C# custom attributes. Our
approach uses reflection to generate replicated objects
based on settings of a special “fault-tolerance” attribute
for C# components.

We have implemented an aspect-weaver for
integration of aspect-code and componen- code, which
uses the mechanisms of the language-neutral .NET type
system. Therefore, our approach is not restricted to the C#
language but works for any of the .NET programming
languages.Introduction and Motivation

1. Introduction

Reliable computer systems used in the
telecommunication industry, in cars and automated
factories (process control) are often implemented as
special purpose systems which are vendor-specific,
expensive, hard to maintain and difficult to upgrade.
Often, those systems apply proprietary techniques to
achieve security and predictable timing behavior, even in

case of faults. With the need of integrating multiple of
those control systems into a bigger whole, requirements
arise to open up proprietary systems for standard (non
real-time) distributed computing technology.

Component-oriented programming provides a
promising way to system composition out of units with
contractually specified interfaces and explicit context
dependencies. Software component can be deployed
independently, they are subject to composition by third
parties. There exist a number of distributed component
frameworks, notably the Common Object Request Broker
Architecture (CORBA) [14] , Microsoft’s Distributed
Component Object Model (DCOM/COM+) [4] , SUN’s
JavaBean Model [7] , and the relatively new .NET
framework [19] .

Although all of these frameworks simplify the
implementation of complex, distributed systems
significantly, the support of techniques for reliable, fault-
tolerant, and secure software, such as group
communication protocols or replication is very limited.

Any fault tolerance extension for components needs
to trade off data abstraction and encapsulation against
implementation specific knowledge about a component’s
internal timing behavior, resource usage, interaction and
access patterns. These non-functional aspects of a
component are crucial for the predictable behavior of real-
time and fault-tolerance mechanisms. However, in
contrast to the various mechanisms describing a
component’s functional interface (Interface Definition
Languages, Class/Method specifications), there is no
general means to describe a component’s non-functional
properties, such as security settings, fault-tolerance
measures and timing behavior.

Within this paper we present our approach towards
component replication for fault-tolerance in the .NET
framework. Following the idea of aspect-oriented
programming [9] we have developed tools and a
description technique for fault-tolerance requirements.
The description technique uses the extensible “custom
attributes”-mechanism of the C# programming language
as an underlying representation and allows specification of
fault-tolerance requirements independently from an

object’s implementation. Using the .NET reflection and
introspection mechanisms, C# attributes can be evaluated
at runtime. We have implemented tools, which allow for
automatic generation of proxy objects, which in turn
manage C# object replication and implement certain fault-
detection mechanisms. Although this work concentrates
on the C# programming language, our approach is more
general and works for all programming languages which
are built upon the .NET type system.

The remainder of the paper is organized as follows:
Section 2 presents related work. Section 3 gives an
overview over the .NET framework. Section 0 discusses
meta-programming and reflection in .NET. Using a simple
calculator a case study, we demonstrate in Section 5 how
fault-tolerance requirements can be expressed using C#
attributes. Section 6 discusses implementation issues
concerning our tools. Section 7 gives direction to future
work and Section 8 finally summarizes our conclusions.

2. Related Work

The idea of providing fault tolerance as additional
feature to distributed, middleware-based component
systems has been lately the focus of several research
activities. There exist a variety of research projects, which
focus especially on the CORBA platform. Significantly
less work exists in context of the Microsoft Component
Object Model (COM) and the new .NET framework.

In order to describe a component’s fault-tolerance
(FT) requirements and fault assumptions, two general
approaches exist: FT requirements and assumptions can be
expressed in some sort of extended interface definition
language (IDL). This solution has been used by the
CORBA systems mentioned below. The other option,
which is also quite common in CORBA systems, is to
hard-code component configuration and FT settings in
form of a set of function calls (FT-API), which is inserted
into component code.

With the “Draft Adopted Submission for Fault
Tolerant CORBA” [15] adopted in March 2000, OMG has
been seeking to incorporate existing approaches for
software fault tolerance into CORBA. Among those
approaches are Electra [12] and Orbix+Isis [6] , both are
CORBA ORB-implementations for reliable, distributed
services. Electra extends the CORBA specification and
provides group communication mechanisms, reliable
multicasts, and object replication. The Electra-ORB uses
services from the underlying ISIS [3] and HORUS [17]
systems. Orbix+Isis [6] works also on top of ISIS [3] . A
different approach has been chosen by the designers of
Eternal [13] , which implements an OMG-compliant fault-
tolerance infrastructure without requiring modifications to
the ORB. Eternal uses CORBA interceptors to attach
group communication protocol and replica management
functionality to the CORBA ORB.

The concept of aspect-oriented programming (AOP)
offers an interesting alternative for specification of non-
functional component properties (such as fault-tolerance
properties or timing behavior). There are a variety of
language extensions with AspectJ [2] [11] [8] (which is a
Java extension) as most prominent example.

The reflection-API as present in Java can be used to
obtain runtime type information about objects and classes.
Using “marker interfaces” and the “instanceof”-operator,
one could implement similar mechanisms as those
introduced with AOP (see [10]). However, since Java
interfaces are rather an implementation mechanism than
an aspect-description mechanism, this approach violates
the separation of component description and
implementation.

Our work is novel as it uses the new C# language
construct of an attribute to express non-functional
component properties without any programming language
extensions and without introducing a new interface
definition language. We have developed a set of tools,
which allow for automatic generation of proxy classes and
replica management in order to deal with crash faults of
object. Our current work has focused in a static
mechanism for inter-weaving functional code and aspect
code however; we plan to create a more dynamic version
based on the new features of the .NET framework and the
Common Language Runtime (namely the ability to
generate, compile, and load code dynamically into the
virtual machine). Additional research will focus on more
sophisticated fault assumptions (timing/omission/incorrect
computation faults).

3. Overview over the .NET Architecture

Almost a year ago, Microsoft has introduced the
.NET architecture as a new component-based
programming environment, which allows for easy
integration of classical distributed programming
techniques with Web computing.

At the center of the .NET framework is an object
model, called the Virtual Object System (VOS), and at
center of the object model is a type system. The object
model relies on basic concepts found in many object-
oriented languages, such as class, inheritance, dynamic
binding, class-based typing and so on. The object model is
not, however, identical to the model of any of these
languages. Rather, it’s an attempt to define a suitable base
that bridges all these languages and others.

The type system of .NET gives objects of predefined
basic types, such as integers and characters, a clear place
in the type system–and it provides a clean way to convert
between reference and value types through "boxing" and
"unboxing" operations. The result is a more coherent and
regular type system than we have seen in the dominant
languages so far.

Most importantly, this model is designed to be
language-independent. The C# programming language
directly reflects the .NET object model. NET’s focus is
rather on the programming model than on any specific
language. The .NET framework itself is language-
independent and attempts to provide a reasonable target to
which all current languages can map. The framework
enables compilers for multiple languages (namely C#,
C++, VB) to share a common back end.

Multilanguage component mechanisms have existed
before, notably CORBA and COM. But they contain a
major hurdle – one has to write an interface description in
the appropriate interface definition language (IDL) for
every component that you make available to the world.
There is no IDL with .NET: You just use classes from
other languages as if they were from your own.

What this means for both component developers and
component users is a dramatic simplification of the
requirements put on any single development environment.
You don’t need libraries addressing every application
area. You provide components in your domains of
expertise, where you can really bring added value. Where
good libraries already exist, you benefit from them at no
extra cost.

4. Metadata and Reflection in .NET

Reflection is a language mechanism, which allows
access to type information during runtime. Reflection has
been implemented for various object-oriented
programming languages, among them Java, C#, and C++.
C++ is somewhat special as it implements reflection rather
as an add-on (RTTI - runtime type information) than as an
inherent language feature. With .NET, reflection is not
only restricted to a single language, but basically anything
declared as code (any .NET assembly) can be inspected
using reflection techniques. There are two variants of
accessing runtime type information in .NET: the reflection
classes in the common language runtime library and the
unmanaged metadata interfaces.

4.1. Reflection via Runtime Library

The runtime library´s reflection classes are defined in
the namespace of System.Reflection. They build on
the fact that every type (class) is derived from Object.
There is a public method named GetType, which has as
return value an object of the type Type. This type is
defined in the namespace System. Every type-instance
represents one of three possible definitions:

• a class definition
• an interface definition
• a value-class (usually a structure)

Via reflection, one may ask about almost every type
attribute, including the type’s access-modifier, whether it
is a nested type and about the type’s properties.

Metadata information is structured in a hierarchical
fashion. At the highest level stands the class
System.Reflection.Assembly . An assembly object
corresponds to one or more dynamic libraries (DLLs)
from which the .NET unit in question is composed. As
depicted in Figure 1, class
System.Reflection.Module stands on the next lower
level of the metadata hierarchy. A module represents a
single DLL. This module class accepts inquiries about the
types the module contains. Proceeding further down the
metadata hierarchy reveals type information for any of the
building blocks making up a member of the .NET virtual
object system.

Type
-Class
-Interface
-ValueType

Assembly

Module

FieldInfo

PropertyInfo

EventInfo

MethodInfo
ConstructorInfo

ParameterInfo

Figure 1: The Metadata Hierarchy of .NET

In each case, an instance of the class
System.Reflection.MemberInfo represents a single
data element. Such a data element may describe one of the
following basic units making up an object:

• method (System.Reflection.MethodInfo)
• constructor

(System.Reflection.ConstructorInfo)
• property (System.Reflection.PropertyInfo)
• field (System.Reflection.FieldInfo)
• event (System.Reflection.EventInfo)

Figure 2 presents an excerpt from a C++ program,

which uses reflection to display all methods of a given
type (MyCalculator in our case).

Type pType=typeof(MyCalculator);
MemberInfo[] arMemberInfo =
pType.GetMembers(BindingFlags.LookupAll);
int cMembers = arMemberInfo.Length;
for (int i=0; i < cMembers; i++) {
 MemberTypes mt = arMemberInfo[i].MemberType;
 if(mt == MemberTypes.Method) {
 // Downcast the MemberInfo to a MethodInfo
 MethodInfo pMethodInfo =
 (MethodInfo)arMemberInfo[i];
 Console.WriteLine(pMethodInfo.Name);
 }
}
Figure 2: Access to Runtime Type Information using

Reflection in C#

4.2. The Unmanaged Metadata Interfaces

The unmanaged metadata interfaces are a collection
of COM interfaces that are accessible from “outside” of
the .NET environment. You can access them from any
Windows program. The interface definition can be found
in the COR.H, which is contained in the platform software
development kit (platform SDK).

The interface
IMetaDataImport.IMetaDataAssemblyImport is
used for accessing metadata on the .NET assembly level.
Access to this interface is obtained via a second interface,
called IMetadataDispenser . As the name indicates,
this interface “dispenses” all kinds of additional metadata
interfaces, which allow read and write access to .NET
metadata.

Access to the metadata dispenser is obtained via calls
to the COM system as depicted in Figure 3 (here as C++
Code):

hr = CoCreateInstance(
 CLSID_CorMetaDataDispenser, 0,
 CLSCTX_INPROC_SERVER,
 IID_IMetaDataDispenser,
 (LPVOID*)&m_pIMetaDataDispenser);

hr = m_pIMetaDataDispenser->OpenScope(
 wszFileName,
 ofRead,
 IID_IMetaDataImport,
 (LPUNKNOWN *)&m_pIMetaDataImport);

Figure 3: Access to the IMetaDataImport Interface
via COM

The IMetaDataImport interface obtained from the
OpenScope() call provides access to the .NET assembly
specified in the wszFileName Argument. Information
about the structure of classes contained in that particular
.NET assembly and their building blocks is now
accessible via functions EnumXXX and GetXXXProps. The
first function returns an enumeration of tokens describing
the metadata available, the latter one returns information

about the metadata’s properties, which correspond to a
particular token.

In addition to the token there exists a special way of
type encoding. The function GetMethodProps for
example gives an array of the type PCOR_SIGNATURE as
return value. This array contains the signature of the
queried element. The same information can be obtained by
multiple calls to EnumXXX and GetXXXProps, however,
using the signatures is the more direct approach.
Signatures contain only pure type information, whereas
GetXXXProps methods reveal also formal parameter
names.

5. A C# Attribute to express Fault-tolerance
Requirements

Within this Section we are presenting a simple
calculator in C# as a case study. We use the calculator as
basis for a discussion on how functional (C#) and non-
functional (aspect) code can be combined.

5.1. The Calculator example

As depicted in Figure 4, our C# calculator has been
implemented within a class Calculator which resides in
the namespace Calc. Our calculator stores its operands
as data-members Op1 and Op2. The class implements a
public member function Add.

namespace Calc {
 public class Calculator {
 public Calculator() { Op1=0; Op2=0; }
 public double Op1;
 public double Op2;
 public double Add() { return Op1+Op2; }
 }
}

Figure 4: The Calculator Class

5.2. Extending the Calculator to tolerate Crash-
Faults

Once the calculator class has been compiled, it is
available as a .NET assembly. Clients may import the
assembly and instantiate calculator objects. We are now
going to introduce a C# attribute which transparently adds
fault-tolerance to our calculator class. With the modified
class, whenever a client creates an object (via new),
multiple instances of the object are created and managed
consistently (replication in space).

Since the main purpose of our work so far was to
investigate whether the C# language and runtime
mechanisms are flexible enough to express non-functional
component properties, we are assuming a very simple
fault model for now. The only faults we assume to occur
are crash faults at the object level. We introduce a proxy

object for replica management, which constitutes a single-
point-of-failure. However, this proxy object can be seen as
part of the client rather than part of the replicated service
(and faults at client side are not considered at all).

Furthermore, we assume that replica consistency can
be maintained without communication among the replicas.
This means that replicas have to be deterministic, they are
not allowed to make (concurrent) use of system services
which require serialization of requests (such as
gettimeofday()).

As discussed in Section 7, we feel that most of those
simplifying assumptions can be lifted in the future. We
plan to use .NET remoting in order to distribute replicated
objects across machine boundaries. This would allow us to
tolerate not only crashes of objects but also process or
node crashes in a distributed environment. The usage of
“aspect-specific templates”, which is mentioned in Section
7.1, allows to generate more flexible code for replica
management than demonstrated here. We plan to
implement a number of consensus protocols to maintain
replica consistency, among them a voting scheme (which
would allow us to detect and tolerate incorrect
computation faults). A master-slave replication scheme
could be considered in order to deal with system calls that
are not idempotent.

For our simple example, we define a C# attribute to
describe fault-tolerance requirements:

 [TolerateCrashFault(n)]

The parameter n indicates how many crash faults of

objects implemented inside the C# component (assembly)
may occur before the service provided by the component
(which is adding numbers) is discontinued.

In order to tolerate n crash-faults of objects, one
needs n+1 replicas of an object. So, behind the scenes, our
component will create n+1 replicas whenever a client asks
for a new calculator objects.

Syntactically, C# attributes may appear at every type
definition. In our case, we have extended the definition of
the Calculator class with an attribute, as depicted below.

[TolerateCrashFault(4)]
public class Calculator {
 /* ... */
}

There are more sophisticated fault -assumptions for
replicated services than just crash faults, however, in order
to demonstrate the automatic generation of code for
replica manageme nt based on C# attributes, we restrict
ourselves to the most simple crash-fault assumption for
objects. In our case, five objects would be created and the
calculator service remains accessible as long as at least
one object survives.

10

10 10
10

???
10

[TolerateCrashFault(4)]

Figure 5: Replication in Space controlled by an

Attribute

In order to make replication (almost) transparent to
clients, the new (redundant) component has to meet the
following requirements:
1. The interfaces must not change. Especially the

method signatures have to remain unchanged.
2. Polymorphism and inheritance relations should

remain intact. If a client is deriving from a class
implemented in a component, then it should still be
able to derive from that class after adding the attribute
to component.

3. Changes in client-side code should be kept minimal.
Additional requirements concern the implementation

of objects, which are to be replicated. Due to our current
simple scheme for managing replica consistency, we
assume deterministic behavior of the objects which
includes the requirement to not interact with further
system components (such other objects, files, non-
deterministic system services).

5.3. The Aspect Weaver (Wrapper Assistant)

In aspect-oriented programming terminology, a tool,
which mixes functional and aspect-code is called an
aspect weaver. We have designed and implemented a tool
called WrapperAssistant, which acts as an aspect weaver
and generates code for replica management. Our tool uses
introspection and re flection techniques based on metadata
in the .NET Common Language Runtime (CLR) to detect
function signatures exported by a component and to
generate proxy classes for those classes exported by the
component. The behavior of the replica management
mechanis m is controlled by the
TolerateCrashFault(n) attribute.

Figure 6 shows a screen dump of a WrapperAssistant
dialog where the user is presented a list of classes
implemented in a particular .NET assembly (the calculator
assembly in our case). Depending on the user’s selection,
the WrapperAssistant will generate code for the
appropriate proxy classes, whose signatures will be
identical with the original classes.

Figure 6: Choosing the Classes

On client side, only minimal changes to the original
code are required. In fact, all the client programmer has to
do in order to use the added fault-tolerance features of a
component is changing a single line of code.

using proxy; // clients have to import the
 // proxy namespace
// using calc; /// in order to activate the
// replica management and fault-tolerance
// features

void Calculate() {
 Calculator c = new Calculator();
 // this comes from the proxy namespace
 c.Op1=3;
 c.Op2=7;
 Console.WriteLine(c.Add());
}

Figure 7: A Client using Calculator-Proxy

The only change required in our client-code is
commented out in line 2 – instead of using the calc
namespace, the client now uses the proxy namespace.
The actual implementation remains untouched.

6. Implementation of the WrapperAssistant

Interception of calls into a component – either at
runtime or by source-code substitution at compile -time –
is a standard way to transparently add code, which
modifies the behavior of a component and implements
certain non-functional aspects (fault-tolerance in our
case). Figure 8 illustrates the control flow necessary to
invoke a function on multiple replicas of an object. The
return values of those function invocations have to be
combined into a single value, which is sent back to the
client. Under the crash-fault assumption, it is sufficient to
simply forward the first value obtained from any replica.
There are various design alternatives:

3+7

[TolerateCrashFault(4)]

distribute method calls Return first Result

=10

Calculator

Proxy

Figure 8: Invoking a Function at Replicated Objects

6.1. Tool Generated Code vs. Runtime Delegation

There exist two main options to implement function
call redirection for a component. The first option would be
using object-oriented function pointers (delegates in C#
jargon) to redirect calls to a specially augmented object
into a series of calls to object replicas. This method is very
flexible and allows for dynamic redirection
(reconfiguration) of function calls. However, access to
replicated member variables and component properties
cannot be handled in this fashion.

Generation of code for replica management at
compile time was the second option. Our aspect weaver
follows this approach and generates proxy classes for
replica management. A proxy class is derived from a
given class and implements the original class’ signature.
However, instead of actually implementing all methods,
the proxy maintains data structures for replica
management and forwards function calls. Additionally, it
implements setter/getter methods for each member
variable present in the original C# class. This way, access
to member variable of replicated objects is handled.

6.2. Source Code vs. Intermediate Language Type
Info

The next question that arises is how to obtain an
interface’s signature. The classical compiler-approach
would be to parse the declaration of the component in its
original languages. This would require access to
components’ source. Also, it would restrict the aspect
weaver tool to components written in a single
programming language.

We have decided to follow the .NET approach and
use runtime type information to derive the signatures of
classes and their members from a binary .NET assembly’s
metadata. There are two different way to
programmatically deal with metadata. The first option is
based on the reflection API present in the C# language.
Using the unmanaged metadata COM interfaces as
accessible from C++ is the second option. Because of
early beta status of some of the C# tools, we opted to use

the unmanaged metadata interfaces for the implementation
of our WrapperAssistant tool.

6.3. Generation of a Proxy Class

The WrapperAssistant generates classes for replica
management within a separate namespace (proxy in our
case). These classes directly extend the public classes
implemented in a given component. For the calculator
example the following code is generated:

namespace proxy {
 public sealed class Calculator:Calc.Calculator
 {
 /* ... */
 }
}

Figure 9: Definition of a Proxy Class

The next step is to overwrite each member function of
the original class with a version, which has an identical
signature but – instead of actually implementing the
function – forwards function calls to multiple replica
objects. To gain access to the assignment of public
variables of the original class, they are defined as
properties in the tool-generated proxy class.

For the calculator this would look as follows:

new public double Op1 {
 get { /* ... */ }
 set { /* ... */ }
}

Figure 10: Getter/Setter Methods for Data Members

Within the constructor of the proxy class, the
appropriate number of base class instances has to be
created. The TolerateCrashFaults attribute as defined
in Figure 11 supplies that number.

public sealed class
TolerateCrashFaults:System.Attribute {
 private int m_i;
 public TolerateCrashFaults(int i) {m_i=i; }
 public int Count
 { get { return m_i+1; } }
}

Figure 11: Definition of TolerateCrashFaults-Attribute

The constructor internally stores the number of
tolerable errors. Variable _Count contains the number of
replicas that have to be created. Figure 12 shows an
excerpt from the proxy class’ constructor.

public Calculator(): base() {
 int _Count=0;
 System.Attribute[] _arAtt =
 System.Attribute.GetCustomAttributes(
 GetType());
 foreach(System.Attribute _attr in _arAtt) {
 if(_attr is TolerateCrashFaults)
 _Count=((TolerateCrashFaults)_attr).Count;
 }
 _bc=new Calc.Calculator[_Count];
 int i;
 for(i=0;i<_bc.Length;i++) {
 try { _bc[i]=new Calc.Calculator(); }
 catch(System.Exception) { _bc[i]=null; }
 }
}

Figure 12: Creation of Replicas

At first the constructor checks for the
TolerateCrashFaults attribute. The attribute then is
read and the constructor creates _Count memory slots (as
Array _bc). Those are then filled with references to the
object replicas.

Each overwritten member function in the proxy class
passes its function-call to every instance referenced in the
array. For the Add function this looks as follows:
public new double Add()
{ int i;
 double _RetVal=new double();
 for(i=0;i<_bc.Length;i++) {
 if(_bc[i]==null) continue;
 try { _RetVal=_bc[i].Add(); }
 catch(System.Exception) { _bc[i]=null; }
 }
 return _RetVal;
}

Figure 13: Function Call Forwarding

7. Future Work

7.1. Aspectspecific Templates

Definition of so-called join points for interweaving
aspect-specific code and functional component code is a
standard problem when using AOP. Interception of
method calls at runtime is an approach chosen by many
aspect systems. However, this allows only for invocation
of aspect specific code before and after each function call.

We have developed a set of so-called aspect specific
templates, which define rules for source-code substitution.
Those templates define special points of interweaving
(join points). The code is written in the target language
(C# in our case). The substitution is then carried out at
these points. Figure 14 presents an example for a template,
which deals with the fault-tolerance aspect and specifies
how to extend a method call. The parts written bold within
the pointed parentheses are interweaving points.

public <MODIFIER> <RESULTTYPE>
<METHODNAME>(<PARAMDECLARATION>) {
 int i;
 <RETVALINIT>
 for(i=0;i<_bc.Length;i++) {
 if(_bc[i]==null) continue;
 try {
 <RETVALASSIGN>_bc[i].<METHODNAME>
 (<PARAMLIST>);
 } catch(System.Exception) { _bc[i]=null; }
 }
 <RETVALRETURN>
}

Figure 14: Template for Function Call Redirection

Our set of templates deals with various aspects of
generation of proxy code. Specific templates focus on:

• Namespaces
• Classes
• Methods
• Arrays
• Constructors

The mechanism is very flexible. Templates allow for
the specification of aspect-code without even knowing the
components with which it will be used.

7.2. Managing Aspect-Information at Runtime

The use of attributes to declare aspects has further
advantages. Since attributes are implemented as classes
(which derive from System.Attribute), they may carry
constructor code as well as additional methods. The aspect
weaver then cannot only determine weather an aspect is
defined; it also can call these functions to obtain
additional information for the weaving process. Using
additional methods declared for an attribute, it is also
possible to change the attribute’s semantics during
runtime of a program. This would allow adapting to
changes in the environment. For example, one could
define an attribute, which uses either replication in space
(if there are enough computing nodes available) or
replication in time in order to tolerate crash faults of
objects or processes. The switch over between those
different implementation strategies would be managed by
the class implementing the attribute – and thus be
transparent to any clients using a replicated service. This
feature clearly exceeds the flexibility of more static
approaches, which use an IDL-like language to express
aspect information.

Another part and the next step of our current work is
dynamic weaving. This means that the weaver is
integrated in the runtime environment. Instead of using the
new statement to create an object, the weaver is called to
generate an instance of the object implemented inside a
.NET component. The .NET system supports the
possibility to creating and executing code at run time. We

are currently studying restrictions imposed on component
interfaces by this approach.

8. Conclusions

The concept of aspect-oriented programming (AOP)
offers an interesting method for specification of non-
functional component properties (such as fault-tolerance
properties or timing behavior). The new component-based
programming environment, introduced by Microsoft
almost a year ago, allows for easy integration of classical
distributed programming techniques with Web computing.
As many other component frameworks, .NET mainly
focuses on functional interfaces of components

However, the Common Language Runtime, which is
the foundation of the .NET framework, supports
introspection and reflection for .NET components
(assemblies). Using these mechanisms, our research
focuses on the application of aspect-programming
techniques to the .NET framework.

Within this paper, we have discussed how the new C#
language construct of an attribute can be used to express
non-functional component properties without any
programming language extensions. We have developed a
set of tools, which allow for automatic generation of
proxy classes and replica management in order to deal
with crash faults of object. We have outlined how the
static mechanism for inter-weaving functional code and
aspect code can be replaced by a more dynamic version
based on the new features of the .NET framework and the
Common Language Runtime. Additional research will
focus on more sophisticated fault assumptions
(timing/omission/incorrect computation faults).

References

[1] T. Archer, “Inside Microsoft C#”, ISBN 0-7356-1288-9,
Microsoft Press.

[2] AspectJ Hompage, http://www.aspectj.org/, 2001

[3] K.P.Birman, “The Process Group Approach for Reliable
Distributed Computing”, Communications of the ACM, Vol. 36,
No.12, December 1993, pp.37-53.

[4] D. Box, “Essential COM”, ISBN 0-201-63446-5, Addison-
Wesley, February 1998.

[5] S. Hanenberg, R. Unland, “Concerning AOP and
Inheritance”, Dept. of Mathematics and Computer Science
University of Essen.

[6] Isis Distributed Systems Inc. and Iona Technologies
Limited, Orbix+Isis Programmer’s Guide, 1995.

[7] SUN Microsystems, “JavaBeans: The Only Component
Architecture for Java Technology”,
http://java.sun.com/products/javabeans/.

[8] G.Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
W. G. Griswold, “Getting Started with AspectJ“,
Communications of the ACM, Vol. 44, Issue 10, October 2001,
pp. 59-65

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Videira Lopes, J.-M. Loingtier, J. Irwin, “Aspect Oriented
Programming”, In proceedings of the European Conference on
Object -Oriented Programming (ECOOP), Finnland, Springer
Verlag LNCS 1241, June 1997.

[10] K.Lieberherr, D. Orleans, J. Ovlinger; “Aspect-Oriented
Programming with Adaptive Methods”, Communications of the
ACM, Vol. 44, Issue 10, Oktober 2001, pp. 39-41

[11] C. V. Lopes, G. Kiczales, “Recent Developments in
AspectJ”, Xerox Palo Alto Research Center.

[12] S.Maffeis, “A Flexible System Design to Support Object
Groups and Object-Oriented Distributed Programming”, in
Proceedings of ECOOP’93, Lecture Notes in Computer Science
791, 1994.

[13] P.Narasimhan, L.E.Moser, P.M.Melliar-Smith, “Strong
Replica Consistency for Fault-Tolerant CORBA Applications”,
in Proceedings of Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS), 2001.

[14] OMG, "The Common Object Request Broker: Architecture
and Specification", Object Management Group, Inc.,
Framingham, MA, USA, 1995.

[15] OMG, “Draft Adopted Submission for Fault Tolerant
CORBA (Part 1 and 2)”, doc.omg.org/ptc/00-03-04,
doc.omg.org/ptc/00-03-05, March 2000.

[16] M. Pietrek, http://msdn.microsoft.com/msdnmag/issues/
1000/metadata/metadata.asp.

[17] A. Polze, J. Schwarz, M. M alek, “Automatic Generation of
Fault-Tolerant Corba-Services”, in Proceedings of Technology
of Object-Oriented Languages and Systems (TOOLS) USA'00,
Santa Barbara, August 2000, IEEE Computer Society Press,
2000.

[18] R.van Renesse, K.P.Birman; “Fault-Tolerant Programming
using Process Groups”, in F.Brazier, D.Jones (Eds.) “Distributed
Open Systems”, Computer Society Press, 1994.

[19] J. Richter, D. Box, several articles about .NET; SYSTEM -
Journal 02/2001 to 05/2001, redtec publishing,
Unterschleißheim, Germany.

[20] Workshop “Microsoft .net Crash Course for Faculty and
PhDs”, Microsoft Research, Cambridge, England, September 3-
6, 2001.

