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An On-Line Algorithm
for Checkpoint Placement

Avi Ziv, Member, IEEE, and Jehoshua Bruck, Senior Member, IEEE

Abstract —Checkpointing enables us to reduce the time to recover from a fault by saving intermediate states of the program in a
reliable storage. The length of the intervals between checkpoints affects the execution time of programs. On one hand, long intervals
lead to long reprocessing time, while, on the other hand, too frequent checkpointing leads to high checkpointing overhead. In this
paper, we present an on-line algorithm for placement of checkpoints. The algorithm uses knowledge of the current cost of a
checkpoint when it decides whether or not to place a checkpoint. The total overhead of the execution time when the proposed
algorithm is used is smaller than the overhead when fixed intervals are used. Although the proposed algorithm uses only on-line
knowledge about the cost of checkpointing, its behavior is close to the off-line optimal algorithm that uses a complete knowledge of
checkpointing cost.

Index Terms —Fault-tolerant computing, checkpointing, on-line algorithm, performance optimization.

——————————   ✦   ——————————

1 INTRODUCTION

HECKPOINTING is a common technique for reducing the
execution time of programs in the presence of faults.

Checkpointing consists of saving intermediate states of the
task in a reliable storage, and, upon a detection of a fault,
restoring the previous stored state. Hence, checkpointing
enables to reduce the time to recover from a fault, while
minimizing the lost processing time.

The interval between checkpoints affects the execution
time of a program. On one hand, inserting more check-
points, and reducing the interval between checkpoints, re-
duces the reprocessing time after failures. On the other
hand, checkpoints have checkpointing costs associated with
them, and, therefore, inserting more checkpoints increases
the overall checkpointing cost and the program execution
time. This trade-off between the reprocessing time and the
checkpointing overhead leads to an optimal checkpoint
placement strategy that optimizes certain performance
measures [3], [4], [5], [7].

Considerable theoretical work has been devoted to ana-
lyzing checkpointing schemes and determining the optimal
checkpoint placement strategy. Brock [1] and Duda [4]
analyzed the execution time of a program with and without
checkpoints. Gelenbe [5] showed that, to maximize avail-
ability in transactions systems, checkpoint intervals should
be deterministic and of the same length. L’Ecuyer and
Malenfant [8] derived a numerical approach for availability
in dynamic checkpointing strategies when the fault rate is
not constant. Nicola and van Spanje [11] compared analysis
and optimization of several checkpointing models that dif-
fer in the checkpoints’ placement and fault occurrence in
transaction systems. Kulkarni, Nicola, and Trivedi [7] in-

vestigated the effects of checkpointing on the execution
time of a program in queueing systems. Coffman and Gil-
bert [3] described optimal strategies for placement of
checkpoints in a single program. A good survey on check-
pointing, describing the above work, can be found in [10].

In all the work described above, it is assumed that the
checkpointing overhead does not depend on the time the
checkpoint is taken. Another approach for placing check-
points, that takes into account the change of checkpointing
overhead over time, can be found in [2]. In that paper,
Chandy and Ramamoorthy proposed an algorithm, based
on a graph theoretic method, for a placement of check-
points that allows the programmer to decide where to place
checkpoints according to an a priori knowledge about the
cost of checkpointing. In [12], Toueg and Babaoglu derive
an algorithm for optimal placement of checkpoints when
there is a small number of possible locations for the check-
points and the cost of checkpointing and recovery at each
such location is known. The CATCH tool [9] is a compiler
assisted technique that helps to improve the placement of
checkpoints using information about the cost of checkpoint-
ing that is gathered in previous executions of the program.

One of the operations that is performed at a checkpoint
is saving the program state on a stable storage. Therefore,
the size of the program state is one of the main factors that
determine the checkpointing cost. During the execution of a
program, the size of its state is dynamically changing due
to allocation and deallocation of memory blocks. While the
size of the program’s state might not be known in advance,
it is possible to keep track of the allocation and deallocation
operations and to know the state size of the program at the
current time. Therefore, an estimation of the checkpointing
cost at the current time can be obtained.

In this paper, we present a new on-line algorithm for
placement of checkpoints. The algorithm keeps track of
the state size of the program, and uses it to estimate the cost
of checkpointing at the current point of execution. The
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knowledge about the cost of checkpointing is used when de-
ciding at which points in the program to place checkpoints.

The main idea in the algorithm described here is to look
for points in the program in which placing a checkpoint is
the most beneficiary. The algorithm tries to find points in
the program in which the state size is small, and use these
points for checkpoints. If such points are found, check-
points are placed at these points with small intervals be-
tween the checkpoints, so that the reprocessing time after a
fault is small. If no such point is found after a period of
time, a checkpoint is taken at a point with higher cost to
avoid long reprocessing time in case of a fault. The main
difference between the adaptive checkpointing presented in
[9] and the algorithm presented in this paper is that our
algorithm not only looks for points with low checkpointing
cost, it also changes the interval between checkpoints to fit
the current cost of checkpointing.

We study the performance of the new on-line placement
algorithm for the simple case when the program has only
two possible state sizes. Comparison of the average execu-
tion time of a program when the proposed algorithm is
used to the average execution time when the intervals be-
tween checkpoints are fixed shows that the overhead for
the on-line algorithm is lower. Although the proposed algo-
rithm uses only past and present information about the cost
of checkpointing when deciding whether or not to place a
checkpoint, its performance is close to the optimal place-
ment strategy that knows the cost of all checkpoints ahead
of time. Comparison of the decision on checkpoint place-
ment done by the two algorithms shows that both algo-
rithms can avoid long periods of high cost and efficiently
use periods of low-cost checkpointing.

While the program might not know ahead of time how
its state size is going to change, it can detect changes in the
state size just before they occur. This additional knowledge
can be used to further improve the placement algorithm.
We show how the on-line algorithm can use this knowledge
to place checkpoints just before the state size increases, and
what benefits this knowledge can provide. Analysis of the
modified algorithm shows that its performance is even
closer to the optimal algorithm than the on-line algorithm.

The rest of the paper is organized as follows. In Section 2,
we describe the model of the program and environment we
use in this paper. In Section 3, we describe the new on-line
algorithm. In Section 4, the performance of the new algo-
rithm is compared with the fixed interval placement strat-
egy and the optimal off-line placement strategy. In Section 5,
a modification to the algorithm that enables to take advan-
tage of detection of an increase in the state size before they
occur is presented. In Section 6, we discuss some changes to
the algorithm that make it fit a more realistic model better.
Section 7 concludes the paper.

2 BACKGROUND

In this paper, we are interested in the average execution
time of a program with checkpoints in a system that is vul-
nerable to faults, and the effects of different checkpointing
placement strategies on the execution time. The faults in the
system occur according to a Poisson process with rate l. At

some points during the execution of the program, check-
points are placed. At each checkpoint, the state of the pro-
gram is saved on a stable storage. After a fault is detected,
the program is rolled back to the last saved state and exe-
cution is resumed from that point. We assume that the
processor that executes the program detects faults immedi-
ately. We also assume that the time to roll the program back
after a fault is detected is zero and that faults cannot occur
during checkpointing.

While the assumptions that we make are not necessary
for the operation of the algorithm presented in this paper,
they make its analysis simpler and help to illustrate the
advantages of the on-line algorithm. In Section 6, we ex-
amine what changes to the algorithm are needed to make it
applicable to a more realistic environment.

Using these assumptions, we can calculate the average
execution time of a program with faults and checkpoints.
The analysis given here is the same one that is used by
Duda in [4]. A program of length t1 is divided into n inter-

vals of length t1, t2, º, tn, such that t tii

n

=Â =
1
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each interval, a checkpoint is placed. The cost of the check-
point at the end of the ith interval is ci. Let Ti be the execution
time of the ith interval, including the checkpointing time at
the end of it. The Tis are random variables and their values
depend on the number and locations of the faults that occur
when the ith interval is executed. The following proposition
gives the average execution time of a single interval. The
proof for the proposition can be found in [4].

PROPOSITION 1. Under the assumptions stated above, Ti , the
average execution time of the ith interval and the overall
execution time of the program are
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A good metric to measure the performance of a check-
pointing placement strategy is the average overhead ratio
R, which is defined as the ratio between the average over-
head, caused by the checkpointing and the faults, and the
program length. In other words,

R
T t

t
T
t=

-
= - 1.

When designing a placement strategy for checkpoints
with a goal to minimize the overhead ratio R, two factors
have to be considered: the overhead caused by the check-
points themselves, and the reprocessing time that is needed
after a fault is detected. If checkpoints are placed close to
each other, then the reprocessing time after a fault has oc-
curred is short. However, the overhead caused by the
checkpoints themselves is high. When the checkpoints are
far from each other, the checkpointing overhead is low, but
long reprocessing might be needed after a fault is detected.
An example on the effects of the interval length on the
overhead ratio is shown in Fig. 1.

1. Throughout the paper, t, with and without subscripts, denotes pro-
ductive time (i.e., excludes time spent in checkpointing, repair, recovery,
and reprocessing) while T denotes elapsed time.
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Fig. 1. Overhead ratio as a function of the interval length.

This trade-off between the checkpointing overhead and
the reprocessing time leads to some optimal placement
strategy that minimizes the overhead ratio R. This optimal
placement strategy depends on the fault rate in the system
and the cost of checkpointing. Next, we describe two exist-
ing placement strategies which we use for comparison with
the on-line placement algorithm we present in this paper.

2.1 Checkpointing with Fixed Intervals
When the cost of checkpointing does not change with time,
or when only the average cost is known, but not how it is
changing with time, the optimal placement strategy is to
place the checkpoints in fixed equidistant intervals [1], [4].
Because the execution times of different intervals are inde-
pendent of each other when the location of the checkpoints
are known, and because placing a checkpoint at a specific
point does not effect future intervals, minimizing the over-
head ratio for each interval alone leads to the optimal
placement strategy. Since the checkpointing cost and the
fault rate are the same during the execution, the optimal
lengths of all the intervals are identical, and the optimal
placement strategy is fixed equidistant intervals.

When fixed intervals are used, the overhead ratio of the
whole program is the same as the overhead ratio for a sin-
gle interval. Using Proposition 1, the overhead ratio for a
single interval of length t is

R t
T t

t
e c

t

t

a f a f
= - =

+ -
-1

1
1

l l
l ,          (2)

where c  is the average cost of a checkpoint. The optimal
interval ~t  that minimizes the overhead ratio is roughly

equal to ~ ~t c- 2
l  [4].

Fig. 1 shows the overhead ratio as a function of the in-
terval length when fixed intervals are used. In the figure,
the fault rate is l = 0.1 and the cost of checkpointing is c =
0.0005. As can be seen in the figure, when t c= =2 0 1l . , the

overhead ratio is minimized.

2.2 Optimal Placement Algorithm
When checkpoints can be placed only in a finite number of
locations and the cost of a checkpoint at each of these loca-
tions is known in advance, the optimal placement strategy
can be found. In [12], Toueg and Babaoglu describe an algo-
rithm for optimal checkpoints placement. In this algorithm,
it is assumed that checkpoints can be placed only at a finite
number of points in the program, and that the cost of
checkpoints in each such point is known in advance. Using
these assumptions, an O(n2) algorithm, based on dynamic
programming technique, is given, where n is the number of
points where checkpoints can be placed.

3 ON-LINE ALGORITHM FOR CHECKPOINTING
PLACEMENT

The checkpointing cost depends on the point in the program
at which the checkpoint is placed. More specifically, the
checkpointing cost depends on the size of the program’s state
at that point. Since the state size of the program changes
during the execution due to memory allocation and deallo-
cation operations, the checkpointing cost is changing with
time according to some random process. Therefore, the fixed
intervals placement strategy is not optimal. On the other
hand, the state size of the program is usually not known in
advance, and, therefore, the optimal off-line algorithm for
placement of checkpoints is not practical.

While the state size of the program is not known in ad-
vance, the program can keep track of its state size by
monitoring memory allocation and deallocation operations.
By monitoring these operations, the program knows its cur-
rent state size. Therefore, it can estimate the current cost of
checkpointing. In this section, we show how knowledge
about the current cost of checkpointing can be used in
placement of checkpoints.

The main idea in the algorithm described here is to look
for points in the program in which placing a checkpoint is
the most beneficial. The algorithm monitors the state size of
the program to find points in which the state size is small. If
such points are found, checkpoints are placed at these
points with small intervals between the checkpoints so that
the reprocessing time after a fault is small. If no such point
is found after a period of time, a checkpoint is placed at a
point with higher cost to avoid long reprocessing time. In
this case, the interval between the checkpoints is longer to
reduce the checkpointing overhead.

To demonstrate how a current knowledge about the
checkpointing cost can improve the performance of check-
pointing schemes, we use the following example. The pro-
gram has two possible state sizes, s1 and s2, such that s1 < s2.
The checkpointing cost when the state size is si is ci (c1 < c2).
The state size of the program changes according to a two
state Markov chain with rate of leaving state si equal to mi.

The algorithm works in the following way. We define two
points in time, t1 and t2, such that t1 £ t2. The algorithm de-
cides whether to place a checkpoint at t, where t is the time
since the last checkpoint, according to the following rules:

1) If t < t1, don’t place a checkpoint.
2) If t1 £ t < t2 and the state size is s1, place a checkpoint

at t.



ZIV AND BRUCK:  AN ON-LINE ALGORITHM FOR CHECKPOINT PLACEMENT 979

3) If t = t2, place a checkpoint at t. The cost of the check-
point is c2.

Note that, in order to avoid high checkpointing over-
head, a checkpoint is never placed before t1. Also, to avoid
long reprocessing time, a checkpoint is never placed after t2.
If, at some point t Œ [t1, t2), a small state size is found, then a
checkpoint is placed at that point. Otherwise, a checkpoint
is placed at t2 with high cost. The values of t1 and t2 affect
the performance of algorithm. By analyzing the overhead
ratio of the algorithm, we can find the values of t1 and t2
that minimize the overhead ratio. Next, we calculate the
overhead ratio of the on-line algorithm.

3.1 Overhead Ratio of the On-Line Algorithm
As we stated earlier, to focus on the benefits of the proposed
algorithm, and simplify the analysis of the proposed algo-
rithm, we assume that faults do not occur during check-
pointing, and that the recovery time after a fault is zero. We
also assume that the faults are detected immediately.

LEMMA 2. With the above assumptions, R, the average overhead
ratio when the on-line algorithm for checkpointing place-
ment is used, is given by

R
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where p2 is the probability that a checkpoint is placed at t2,
given by
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PROOF. The proof of the lemma consists of the following
propositions that derive the probability of placing a
checkpoint at t2 and t1, the average length of an inter-
val between checkpoints, and the average execution
time of such interval.

PROPOSITION 3. In a steady-state, p2, the probability that the
state size at a checkpoint is s2 is
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PROOF. In a steady-state, the probability that the state size at
a checkpoint is s2 satisfies the following equation

p2 = Pr{state size is s2 | state size at previous cp was s2} ◊ p2 +

Pr{state size is s2 | state size at previous cp was s1} ◊ (1 - p2). (5)

The state size at a checkpoint is s2 if, and only if, a
checkpoint is placed at t2, and a checkpoint is placed
at t2 if, and only if, the state size at t1 is s2 and the state
size does not change in the interval [t1, t2]. Therefore,
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where P1,2(t1) and P2,2(t1) are the transition probabili-
ties from states s1 and s2, respectively, to s2 at time t1
given by
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Assigning these values to (5) and solving for p2
yields (4). �

Note that p2 is less than or equal to the steady-state
probability of s2, and it can be close to zero for high
m2. It means that the proposed algorithm uses the
cheaper checkpoint more often than algorithms that
do not consider the current checkpointing cost.

PROPOSITION 4. In a steady-state, p1, the probability that a
checkpoint is placed at t1 is

p p e t t
1 21 2 2 1= - -m c h . (6)

PROOF. A checkpoint is placed at t2 if, and only if, it was not
placed at t1 and the state size remained s2 in the inter-
val [t1, t2]. Therefore,

p p e t t
2 11 2 2 1= - ◊ - -c h c hm ,
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1 21 2 2 1= - -m c h .        �

COROLLARY 5. The probability density function (pdf) of the in-
terval length f(t) is

f t p t t p t t p e t ta f c h c h c h c h= ◊ - + ◊ - + - ◊- -
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where d(◊) and U(◊) are the impulse and step functions,
respectively.

PROPOSITION 6. The average length of an interval between check-
points is
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PROOF. Let f(t) be the probability density function (pdf) of
the interval length, then
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PROPOSITION 7. The average execution time of an interval be-
tween checkpoints is
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PROOF. Let T(t, c(t)) be the average execution time of an in-
terval of length t with checkpoint of cost c(t) at the
end of it. From Proposition 1, we know that
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PROPOSITION 8. The average overhead ratio of a program is

R
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PROOF. To calculate the overhead ratio of a program, it is
not enough to calculate the average overhead of an
interval. We need to consider also the length of the
intervals, since longer intervals occupy more of the
program, and, thus, they have bigger influence on the
overhead ratio. Therefore, using similar arguments to
those used when considering the current life of a ran-
dom point in time in renewal theory [6], the average
overhead ratio of a program is given by
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Assigning the values of ti  from (8) and Ti  from (9)
into the expression of the overhead ratio of a program
given in (10) yields the expression in (3) and com-
pletes the proof of Lemma 2. �

Given l, m1, m2, c1, and c2, we can numerically find the
values of t1 and t2 that minimize the overhead ratio R. More
on the selection of t1 and t2 can be found in Section 4.

4 COMPARISON WITH EXISTING ALGORITHMS

To illustrate how the current knowledge about the cost of
checkpointing and the proposed on-line algorithm can be
used in reducing the execution time of a program, we com-
pare the overhead ratio of a program using the on-line al-
gorithm to the overhead ratio when the two strategies de-
scribed in Section 2 are used, namely, the fixed intervals
strategy and the optimal placement. The comparison to the

fixed interval placement illustrates how the current knowl-
edge about the cost of checkpointing helps to reduce the
average execution time of a program. It also provides in-
sight to the optimal values of t1 and t2 that minimize the
overhead ratio. The comparison to the optimal placement
strategy shows how much the performance of the on-line
algorithm can be improved when the cost of checkpoints in
all possible locations is known in advance and how the on-
line and optimal algorithms differ in the placement of
checkpoints.

The comparison of the new on-line algorithm with the
fixed intervals placement strategy is done by comparing the
overhead ratio of the on-line algorithm, given in Lemma 2,
with the overhead ratio of the fixed intervals placement
strategy, given in (2). The values of t1 and t2 for the on-line
algorithm and the interval length t for the fixed intervals
placement strategy are those that minimize the overhead
ratio.

Since we cannot analytically find the overhead ratio of
the optimal placement, we used experimental results to
compare the on-line placement algorithm with the optimal
placement. We generated a large number of instances of the
program’s state size according to the two states Markov
chain. For each such instance, we found the placement of
the checkpoints when the optimal algorithm and the on-line
algorithm are used. After the checkpoints were placed, we
calculated the overhead ratio of the instance when both
algorithms are used. Finally, we calculated the average
overhead ratio over all instances that used the same pa-
rameters (l, m1, m2). The experimental values of the over-
head ratio for the on-line algorithm are identical to the
analytical values obtained using Lemma 2.

4.1 Checkpointing with Fixed Intervals
In Fig. 2, the overhead ratio of a program as a function of
the fault rate l is shown. The figure shows the execution
time when the checkpointing costs are c1 = 0.0005 and c2 =
0.005. The figure shows the execution time for two cases of
m1 and m2. In Fig. 2a, m1 = m2 = 10, and, in Fig. 2b, m1 = m2 = 1.
The figure compares the execution time of a program when
fixed equidistant intervals are used to the execution time
when the on-line algorithm for placement of checkpoints is
used. As a reference, the figure also shows the overhead
ratio if the cost of the checkpoints is only c1. It can be seen
in the figure that the on-line algorithm has a lower over-
head ratio.

To understand why the on-line algorithm has a lower
overhead ratio than the fixed interval placement, let’s con-
sider two extreme cases; the first is when the rate of
changes in the state size is very low, and the second, when
the rate of changes is very high.

When the rate of changes in the state size is very low, the
probability of a change in the state size between t1 and t2 is

practically zero, and checkpoints are placed only at t1 and

t2. In this case, by using the optimal checkpointing intervals

when the cost of a checkpoint is only c1 or c2 as t1 and t2,
respectively, the on-line algorithm adapts to the current
checkpoint cost, and uses the optimal interval for that cost.
Therefore, for low rate of changes in the state size, the
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optimal values of t1 and t2 are t t1, 1opt = ~  and t t2 2,
~

opt = ,

where ~t1  and ~t2  are the optimal checkpointing intervals

when the cost of checkpoints are the constants c1 and c2,
respectively.

When the rate of changes in the state size is high, the on-
line algorithm uses this fact to locate a point with a low cost
near ~t1  and place a checkpoint at that point. The result is
that the cost of a checkpoint is always the low cost, and the
interval between the checkpoints is close to the optimal
interval for that cost. In this case, it is always better to wait
for a point with a low cost, and the optimal value for t2 is
very high.

In the medium range, when 1
2m  has the same order of

magnitude as ~t1 , the on-line algorithm can take advantage
of the points with low checkpointing cost that are near ~t1 .
To be sure that such points are not missed, the algorithm

starts to look for it before the optimal interval ~t1 . Therefore,

for this range of m2, t t1, 1opt < ~ . In this range, there is a good

chance that the state size is going to change from high to
low when ~t2  is reached and that this change will occur fast
enough so that it is better to wait for that change, and, there-
fore, in that range, t t2 2,

~
opt > .

Fig. 3 shows the overhead ratio and the optimal t1 and t2 as

a function of m2. The figure shows these values when l = 0.1,

and the possible costs of a checkpoint are c1 = 0.0005 and

c2 = 0.005 and m1 = m2. The figure shows that, for low m2, the
overhead ratio is somewhat lower than the overhead ratio
when fixed intervals are used. As m2 increases, the overhead

ratio of the on-line algorithm drops, and, for m2 > 100, the

overhead ratio is as if the cost of checkpointing was c1 every-

where. The plot of the optimal t1 and t2 shows that, for low

m2, the optimal values equal to ~t1  and ~t2 . When m2 increases,

the optimal value of t1 decreases so that a point of low cost

near ~t1  is not missed, while the optimal value for t2 in-
creases to enable the algorithm to catch points with low cost
at that area. Further increasing m2 causes the optimal t1 to

(a) m1 = m2 = 10

(b) m1 = m2 = 1

Fig. 2. Overhead ratio as a function of l.

Fig. 3. Overhead ratio as a function of m2.
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increase and be closer to ~t1  because, for these values of m2,
the chance of finding a point with low cost is getting
higher. The behavior of the overhead ratio and the optimal
t1 and t2 for different ratios of m2/m1 are similar to the be-
havior shown in Fig. 3.

4.2 Optimal Placement Strategy
Fig. 2 shows the overhead ratio of a program as a function
of the fault rate l for the on-line algorithm and optimal
placement strategy. The figure shows that the optimal
placement strategy performs better than the on-line algo-
rithm, but the difference between them is not large, and the
on-line algorithm is closer to the optimal placement strat-
egy than the fixed intervals strategy.

In Fig. 3, the overhead ratio of the program, as a function
of the rate of changes in the state size, is shown for both
algorithms. The figure shows that both algorithms are af-
fected in the same way by m2. When m2 is low, both algo-
rithms adapt to the current state size and use the optimal
interval for that state size. When m2 is high, both algorithms
can find points with small state size close to the optimal
interval for that state size and place checkpoints there.
Therefore, the overhead ratio is the same as if only the low
state size exists. In the medium range for m2, the optimal
algorithm can use its knowledge about the cost of future
possible checkpoints to achieve lower overhead ratio.

To understand the difference and similarities in check-
pointing placement between the two algorithms, we exam-
ined a few of the instances of the random state sizes we
generated, and looked where each of the algorithms placed
its checkpoints. Fig. 4 shows three such instances. In all
three cases, the fault rate is l = 0.1 and the checkpointing
costs are c1 = 0.0005 and c2 = 0.005. In the top and bottom
plots, m1 = m2 = 10, and, in the middle plot, m1 = m2 = 3. The
plots show the state size of the program as a function of the
time t, and the points where each of the algorithms places
the checkpoints. The figure also shows the checkpointing
placement of a modified version of the on-line algorithm,
with rise detection in the state size, that is described later in
the paper, in Section 5.

The top plot shows that both algorithms avoid placing
checkpoints when the cost is high, even when there are long
intervals of high cost. The difference in the algorithms in this
plot is the interval between the checkpoints. The optimal al-
gorithm knows exactly the intervals of low and high cost, so
it can use them to place the checkpoints with the optimal
interval between them. On the other hand, the on-line algo-
rithm does not know when the cost is going to change from
low to high, and so it prefers to use intervals which are
shorter than the optimal interval when the cost is low, in-
stead of losing the possibility to place a checkpoint with a
low cost.

The second plot gives an example where the on-line al-
gorithm places a checkpoint with high cost, while the opti-
mal algorithm avoids the high cost interval. The optimal al-
gorithm knows the length of the high cost interval, and that it
is better not to place a checkpoint in it. On the other hand, the
on-line algorithm anticipates that the interval is going to be
much longer (because of the value of m2), and, therefore, it

concludes that it is better to place a checkpoint in it.
The bottom plot shows an example where the optimal

algorithm places a checkpoint at a point with a high cost,
while the on-line algorithm avoids it. In this example, the
on-line algorithm anticipates a fast change in the state size,
and, therefore, it decides to wait for the small state size and
place the checkpoint there. On the other hand, the optimal
algorithm knows that the interval is going to be long, and,
therefore, it is better to place a checkpoint in it.

5 DETECTION OF INCREASE IN THE STATE SIZE

So far, we have assumed that the program does not have
any knowledge about future changes in its state size. While
this assumption is generally true, there are some cases
when a partial knowledge about the future behavior exists.
This partial knowledge can be used to improve the place-
ment strategy. The simplest example about future knowl-
edge is knowledge about changes in the state size just be-
fore they occur. When the memory allocation or dealloca-
tion functions are called, the program knows that state size
is going to change before the change actually occurs.

Detection of changes in the state size before they occur is
important when the state size increases. In this case, it
might be beneficial to place a checkpoint with lower cost
just before the state size increases. The ability to place a
checkpoint just before the state size increases can contribute
to the performance of the placement strategy in two ways.
When the algorithm can place a checkpoint before the state
size increases, it does not have to be “over-eager” when
looking for points with low cost (the drop down in the
value of t1,opt in Fig. 3). Instead, it can wait until ~t1  is
reached, or the state size is about to change, and place the
checkpoint at that time. Also, when a checkpoint is placed
before the state size increases, the probability of placing a
checkpoint with a large state size gets lower, and, thus, the
checkpointing overhead is smaller.

Fig. 4. Placement of checkpoints by the optimal off-line algorithm and
the on-line algorithm with and without rise detection.
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In this section, we show how to modify the on-line algo-
rithm we presented in Section 3 to include the case of de-
tection of an increase in the state size before they occur. We
also show how to analyze the modified algorithm and
compare its performance to the original on-line algorithm
and optimal off-line placement.

5.1 The Modified Algorithm
In the modified algorithm, we add another point in time t0,
such that t0 £ t1. A checkpoint is placed at time t, t0 £ t < t1,
if the state size at t is s1 and the state size at t+ is s2. In other
words, if the state size is changing from s1 to s2 during the
interval [t0, t1), then a checkpoint is placed just before the
change. If a checkpoint is not placed in the interval [t0, t1),
then the algorithm continues as the algorithm in Section 3.

The analysis of the modified algorithm is essentially the
same as the analysis of the original on-line algorithm that
was shown in Lemma 2. The details of the analysis of the
modified algorithm can be found in [13].

Fig. 5 shows the overhead ratio and the optimal t0 and t1
as a function of m2. The figure shows this value when l = 0.1,
the possible costs of a checkpoint are c1 = 0.0005 and c2 =
0.005, and m1 = m2.

(a) Overhead ratio

(b) Optimal Intervals

Fig. 5. Overhead ratio and optimal t0 and t1 for the modified algorithm.

Fig. 5a shows the overhead ratio as a function of m2 for
the modified algorithm, the original on-line algorithm and
the optimal off-line algorithm. The figure shows that the
modified algorithm has a lower overhead ratio than the
original on-line algorithm, and its behavior is closer to the
optimal algorithm.

One of the reasons the modified algorithm performs
better than the original on-line algorithm, is that it does not
have to be “over eager” when looking for points with a
small state size. The original algorithm does not know
when the state size is going to increase. Therefore, in order
not to lose the small state size, it places checkpoints before
the optimal interval for the small state size ~t1  is reached. On
the other hand, the modified algorithm can wait until just
before the state size changes or ~t1  is reached before it places
a checkpoint, because it knows about the change in the state
size before it occurs. Also, when the algorithm knows that
the state size is going to increase, it is sometimes better to
place a checkpoint after a short interval, especially when
the m2 is low. Therefore, the optimal value for t0 for the

modified algorithm is lower than the optimal value for t1 in
the original algorithm.

Fig. 5b shows the optimal values of t0 and t1 for the

modified algorithm as a function of m2, and for comparison

the optimal value of t1 for the original algorithm. The figure

confirms that the optimal value of t1 for the modified algo-

rithm is equal to ~t1 , and the drop in the value of t1,opt that
occur in the original algorithm to avoid losing points with a
small state size is not needed in the modified algorithm.
The figure also shows that, for low values of m2, when the

average time before the state size changes from s2 to s1 is
high, it is beneficial to place checkpoints with a very short
interval between them to use the small state size. As the
value of m2 gets higher, the value of t0 is also getting higher,

until it reaches t1 for very high values of m2.
The placement examples that are shown in Fig. 4 also

help to illustrate the advantages of the modified algorithm
over the original algorithm. The plots in the figure show
three instances of changes in the state size, and the points
where the on-line algorithm, the modified on-line algo-
rithm, and the optimal algorithm placed their checkpoints.
The figure shows that, during long periods of small state
size, the modified algorithm places its checkpoints with the
same intervals as the optimal algorithm, while the original
algorithm uses smaller intervals. Another advantage that
the modified algorithm has on the original algorithm is that
it can sometimes avoid checkpoints with large state size, as
can be seen in the middle plot of Fig. 4. Because the modi-
fied algorithm places checkpoints just before the state size
increases, the probability that the state size will not change
to s1 before t2 is smaller than the same probability in the
original algorithm that places the checkpoint some time
before the state size increases.
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6 A MORE REALISTIC MODEL

The algorithm presented in this paper assumes that the
program has only two state sizes and that the state size of
the program is changing according to a Markov process
with known parameters. In practice, both assumptions are
not valid. The state size of a program is a continuous ran-
dom process whose parameters are hard to estimate.

To overcome the continuous state size problem, two ac-
tions are needed. The first action is to quantize the state
size, for example, to the nearest K-byte. If the quantization
error is not big, the effects of the quantization on the per-
formance of the algorithm are minimal. Finding a good
quantization strategy that will minimize the effects on the
performance of the algorithm and will not use too many
quantization levels is still an open problem.

Even after quantization, a program is likely to have more
than two state sizes. The algorithm presented in Section 3
can be extended to the case when there are more than two
state sizes in the following way.

We assume that the possible state sizes are s1, s2, º, sn,
and that the cost of a checkpoint for a state size si is ci,
where c1 £ c2 £ � £ cn. Each state size si has an interval ti
associated with it. The algorithm decides whether to place a
checkpoint at time t, where t is the time since the last
checkpoint according to the following rules:

• If, at some time t Œ [ti, ti+1), the state size is s1, s2, º, si,
a checkpoint is placed at that time.

• At time t = tn, a checkpoint is placed, regardless of the
state size at that time.

The second unrealistic assumption made in the paper is
the complete knowledge on the parameters of the random
process that controls the state size of the program. These
parameters are used to calculate the optimal values for the
tis. Without knowledge about these parameters, the optimal

values have to be estimated. A good estimation for ti,opt are
the optimal intervals when the cost of checkpointing is a
constant, ~ti . The dotted line in Fig. 2 shows the overhead

ratio when ~t1  and ~t2  are used instead of t1,opt and t2,opt. As
can be seen in the figure, the overhead ratio is almost iden-
tical. Since ~ti  are independent of the parameters of the
Markov process, they can be used even if these parameters
are not known.

Another unrealistic assumption that was made in the
paper was the time to roll back after a fault is detected. This
assumption is not necessary for the operation of the algo-
rithm. This assumption also does not affect the behavior of
the algorithm. The only reason the assumption was made,
was to simplify the analysis of the algorithm.

7 CONCLUSIONS

In this paper, we showed that knowledge about the current
state size of the program can be used in placement of
checkpoints in a program, and that using this knowledge
can lead to a significant reduction in the overhead ratio. To
illustrate how this knowledge can be used, we presented a
new on-line algorithm for placement of checkpoints. The
algorithm first tries to place a checkpoint in places where

the cost of the checkpoint is small. Only if no such point
was found, a checkpoint is placed at a point with higher
checkpointing cost.

We studied the overhead ratio of a program using this
algorithm, and compared the performance of the proposed
algorithm to a simple algorithm that places the checkpoints
at fixed intervals, and to the optimal placement strategy
that uses a perfect a priori knowledge on the cost of check-
points at all possible locations. The comparison results
show that the proposed algorithm performs better than the
fixed intervals algorithm, and a significant reduction of up
to 66 percent in the overhead ratio can be obtained. Al-
though the proposed algorithm uses only the cost of a
checkpoint at the current location, its behavior is close to
the optimal algorithm that uses an a priori knowledge of
the checkpointing cost in all possible locations.

The same on-line placement strategy can be combined
with other placement algorithms and improve their per-
formance when the fault rate in the system is not a constant
or when the changes in the state size do not occur accord-
ing to a Markov process.

An interesting problem is to combine the on-line algo-
rithm with some partial knowledge about the state size of
the program in the future, like the information collected by
the CATCH tool [9]. This additional knowledge about the
state size can be used to improve the decision about the
placement of checkpoints, and bring the algorithm closer to
the optimal algorithm.
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