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The Time-Triggered 
Protocol integrates 

such services as 
predictable message 
transmission, clock 

synchronization, 
membership, mode 

change, and blackout 
handling. It also 

supports replicated 
nodes and replicated 

communication 
channels. 

eal-time control systems must share critical information among autono- 
mous subsystems in a timely and reliable manner. For example, automo- 
tive applications have separate subsystems for engine and transmission 

control. Given a specified load and fault hypothesis, the computer architecture 
must assure a predictable and small bounded maximum latency between a stimulus 
from and a response to the environment. Furthermore, it must support the 
implementation of fault tolerance by active redundancy. 

Two fundamentally different paradigms for the design of real-time systems are 
event-triggered architectures and time-triggered architectures (see the sidebar, 
“Time-triggered real-time architectures”). In an event-triggered architecture, all 
activities - task activation, communication, and so on - are initiated as conse- 
quences of events (significant state changes). Because event-triggered architec- 
tures make all scheduling and communication decisions on line, they are some- 
times called dynamic architectures or interrupt-driven architectures. 

Time-triggered architectures, on the other hand, are driven by the progression 
of the global time.’ All tasks and communication actions are periodic, and external 
state variables are sampled at predefined points in time. Time-triggered archi- 
tectures are based on stronger regularity assumptions than event-triggered 
architectures and are therefore less flexible but easier to analyze and test. If the 
real-time system is time-triggered, then, as we show later, we know how to solve 
problems of replica determinism, systematic testing for timeliness, and timely 
membership service. 

The Time-Triggered Protocol (TTP) we present here is an integrated communi- 
cation protocol for time-triggered architectures. It provides the services required 
for the implementation of a fault-tolerant real-time system: predictable message 
transmission, message acknowledgment in group communication, clock synchro- 
nization, membership, rapid mode changes, and redundancy management. It 
implements these services without extra messages and with only a small overhead 
in the message size. 
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In this article we describe our archi- Architectural 
tectural assumptions, fault hypothesis, 
and objectives for the TTP protocol. characteristics 
After we elaborate on its rationale, we 
give a detailed protocol description. We Rapid periodic message exchanges 
also discuss TTP characteristics and form the bulk of the load in a time- 
compare its performance with that of triggered architecture. However, a 
other protocols proposed for control time-triggered architecture also uses 
applications. sporadic event-triggered communica- 

tion with predictable small latency - 
for example, when it rapidly switches to 
an emergency mode. 

System structure. The distributed 
computer system for which we devel- 
oped TTP consists of fail-silent nodes 
connected by two replicated broadcast 
communication channels. (As we ex- 

Time-triggered real-time architectures 

Every real-time system has to provide the specified time- 
ly service to its environment. To meet this requirement, 
there are two fundamentally different paradigms: the event- 
triggered approach and the time-triggered approach.’ 

In an event-triggered system, a significant event in the 
environment or computer triggers the start of the corre- 
sponding system activity - for example, the activation of a 
task or the transmission of a message. Normally, the inter- 
rupt mechanism signals significant events to the operating 
system. Based on the evolving request scenario, the oper- 
ating system dynamically determines the order of task exe- 
cutions to meet the specified deadlines. 

A time-triggered system initiates all system activities - 
task activation, message transmission, and the recognition 
of message arrival - as the real-time clock reaches prede- 
termined values. Ideally, a time-triggered operating system 
recognizes a single interrupt signal: the ticks generated by 
the local clock at predetermined points in time. It performs 
a table lookup to determine the task to activate at each 
point. A distributed time-triggered system must synchronize 
the local clocks to represent a globally synchronized time 
base of specified precision.2 

Let’s compare event-triggered and time-triggered imple- 
mentations of an elevator-control system in a high-rise 
building with many parallel elevators. In an event-triggered 
implementation, each push of an elevator-call button by a 
client signals the elevator-control system via an interrupt. 
The control system then immediately decides which eleva- 
tor is to serve the pending request. 

A time-triggered implementation scans the elevator-call 
buttons periodically, say, every second. It treats all buttons 
pushed in the last second equally. Based on the result of 
this scan, the elevator-control system generates a new ele- 
vator schedule every second. 

In a low-load scenario where a button is pressed only 
every few seconds, the event-triggered implementation is 
more responsive than the time-triggered implementation. 
However, in a high-load scenario where many buttons are 
pressed during each second, the time-triggered implemen- 
tation requires less organizational overhead (fewer interrupt 
service and scheduler calls) and provides better and more 
predictable service. 

With a time-triggered architecture, we know a priori (and 
design into all nodes) much information about the system’s 
future behavior - for example, which node must send what 
type of message at a particular time. The TTP protocol we 
present in this article makes good use of this a priori infor- 
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mation. For example, the message and sender name do 
not have to be part of the frame, since nodes can retrieve 
this information using the point in time when the frame is 
sent. Also, for error detection, a receiving node can deter- 
mine a frame is missing immediately after the anticipated 
arrival time has elapsed, without the exchange of any ac- 
knowledgment information. 

The subsystems of a time-triggered architecture are 
temporally encapsulated by the time-division multiple- 
access protocol. Since every subsystem in a time- 
triggered architecture generates its control signals locally 
from the progression of its local clock, a time-triggered 
architecture has no control signals crossing subsystem 
interfaces. Time-triggered systems are therefore more 
robust and testable than event-triggered systems, but they 
require more planning and are less flexible. In the elevator 
application, it is impossible to overload the time-triggered 
computer system by too many pushes of the call buttons 
-the ftow control is implicit. An event-triggered impte- 
mentation requires a special mechanism to protect the 
computer from external overload - the flow control is 
explicit. 

The implementation of active redundancy requires that 
all replicas visit the same state at about the same time 
(replica determinism). Since time-triggered systems avoid 
preemptive dynamic scheduling decisions, they can 
maintain replica determinism without special agreement 
protocols. 

Safety-critical real-time computer applications for flight 
control, nuclear power plant shutdown, and so on, have 
to be fault tolerant and are therefore based on the time- 
triggered paradigm. For example, the control system 
for Japan’s Shinkansen bullet train uses a large time- 
triggered fault-tolerant system.3 
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Table 1. Failure rates. 

Failure Type Failure Rate 
(IO-“/hour) 

Permanent node 
failure 

Permanent channel 
failure 

Transient node 
failure 

Transient channel 
failure 

102 

104 

lo’ 

lo6 

plain later, fail-silent nodes deliver ei- 
ther correct results or no results at all.) 
To tolerate node failure, a system engi- 
neer can replicate nodes.? It can also 
group nodes into fault-tolerant units 
(FTUs),j which provide one of several 
levels of fault-tolerant service to their 
clients. The time-triggered architecture 
guarantees that replicated nodes per- 
form the same state changes at about 
the same time. As long as at least one 
node of an FTU isoperational, the whole 
unit is considered operational. TTP syn- 
chronizes the nodes’ real-time clocks to 
within a known precision. 

Each node has a communication con- 

troller with two bidirectional communi- 
cation ports connected to the two repli- 
cated broadcast channels. Interface 
nodes have an additional interface to 
sensors or transducers in the environ- 
ment. Also. each node has error- 
detection mechanisms so it can termi- 
nate operation in case of an error. 

A communication channel is a pas- 
sive local area network - a broadcast 
bus-that transports one message at a 
time. Access to the communication 
channel is determined by a time- 
division multiple-access (TDMA) sche- 
ma controlled by the TTP-generated 
global time. We call a complete cycle, 
during which each FTU has been grant- 
ed at least one sending access, a TDMA 
round. 

Fault hypothesis. We assume that node 
failures are fail silent and channel fail- 
ures are omission failures. Table 1 gives 
the orders of magnitude for the assumed 
failure rates. 

Although the transient channel- 
failure rate of 0.001 per hour looks 
high, it is still low if considered on a per- 
message basis. If the system propagates 
1,000 messages per second. the tran- 
sient message-failure rate is still smaller 
than lo-” corrupted messages per mes- 

Class 1 configuration 

Class 2 and Class 3 configurations 

sage. If the independence assumption 
holds, the probability of two or more 
message losses within a single TDMA 
round is very low. 

During temporary blackout periods, 
the transient failure rates of the nodes 
and channels can be significantly higher 
than these failure rates. 

System configurations. We call the 
bit packet transported on the physical 
level a frame. A frame can contain one 
or more application messages. Starting 
with the least fault tolerant, Table 2 
presents data for four classes of system 
configurations:’ 

*Class 1: One node per FTU, two 
frames per FTU. 

l Class 2: Two active nodes per FTU, 
two frames per FTU. 

l Class 3: Two active nodes per FTU, 
four frames per FTU. 

l Class 4: Two active nodes and one 
shadow node per FTU, four frames 
per FTU. 

Figure 1 shows the configurations. A 
shadow node in a Class 4 architecture 
receives all input messages but does not 
produce any output as long as the FTU’s 
other two nodes are operational. If a 
node fails, the shadow node takes its 
right to send and produces output. 

We select the system-configuration 
class for an application on the basis of 
the dependability we want and the fail- 
ure rates we assume. For example, a 
Class 1 configuration may be appropri- 
ate if most failures are in the cabling 
(interconnectors and contacts). 

Protocol objectives 

We intended TTP for Class C safety- 
critical automotive applications? real- 
time control activities requiring guar- 
anteed timeliness and fault tolerance. 
Our objective was a protocol that inte- 
grated all services needed in such 

I applications: 

Figure 1. 
Fault-tolerant 

configurations. 

Table 2. Levels of fault tolerance (in terms of the number of tolerated node failures or frame losses). 

Failure Type Class 1 

Permanent node failure 0 
Permanent communication failure 1 
Transient node failure 0 

Transient communication failure 1 of2 

Class 2 

1 
1 

l/recovery 
interval 

1 of2 

Class 3 

1 
1 

l/recovery 
interval 

3 of4 

Class 4 

2 
1 

l/TDMA 
round 
3of4 
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l Message transport with predictable 
low latency. In a real-time system, the 
duration of the protocol execution af- 
fects the temporal accuracy of informa- 
tion. A  real-time protocol’s execution 
time must have a low maximum and 
small variability under all specified load 
and fault conditions. The protocol must 
handle time-triggered periodic mes- 
sages and event-triggered sporadic 
messages. 

l Fault tolerance. The protocol should 
tolerate all transient and permanent 
node and channel failures listed in the 
fault hypothesis without violating the 
functional or temporal specifications. 
Standard communication protocols pro- 
vide error detection at the sender’s site. 
In real-time applications, communica- 
tion errors that cannot be masked by 
redundancy should be detected at the 
receiving site as well as at the sending 
site with minimal error-detection 
latency. 

l Temporary blackout handling. A  
temporary blackout is the temporary 
interference of the control system’s op- 
eration by some powerful external dis- 
turbance, causing correlated failure of a 
set of nodes. The protocol should detect 
and handle temporary blackouts 
promptly. 

l Clock synchronization. Because or- 
dinary local clocks are not perfect, the 
establishment of a global time base with 
known precision is crucial. When times 
on local clocks drift apart, the protocol 
must implement a resynchronization 
strategy. 

l Membership service. A  membership 
service gives all nodes consistent infor- 
mation about present and absent nodes5 
In TTP the membership service is the 
basis for the implementation of atomic- 
multicast and redundancy-management 
protocols. It also detects incoming and 
outgoing link failures to implement the 
fail-silent abstraction of nodes. 

l Distributed redundancy manage- 
ment. A  redundancy-management pro- 
tocol must remove failed nodes and re- 
integrate spare and repaired nodes. A  
distributed system distributes the re- 
dundancy management itself to avoid a 
single point of failure. 

aSupport for rapid mode change. 
Real-time applications have different 
operational modes: start-up, normal 
operation, emergency, and so on. The 
protocol should support rapid change 
from one mode to another consistently 
at all nodes. 
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l Minimal overhead. Many real-time 
applications (for example, automotive 
electronics) have limited communica- 
tion bandwidth. The protocol should 
provide the specified service with min- 
imal overhead, both in message length 
and number of messages. 

. Utmost flexibility without compro- 
mising predictability. Flexibility and 
predictability are competing goals. The 
protocol should provide utmost flexi- 
bility while maintaining determinism: 
the analytical predictability of the 
timeliness. The protocol should be 
scalable to high data rates. It should 
operate efficiently on twisted wires as 
well as optical fibers, to be scalable to 
different data rates and to be indepen- 
dent of the transmission medium. The 
economic benefits of a real-time pro- 
tocol operating efficiently on twisted 
wires are very significant for automo- 
tive applications. 

Design rationale 

TTP is an integrated protocol that pro- 
vides these services without the strict 
separation of concerns proposed in the 
layered Open Systems Interconnection 
model. The OS1 model is excellent 
conceptually for reasoning about differ- 
ent design issues. However, timeliness is 
not one of its goals, and it is inadequate 
as an implementation model for time- 
critical protocols. 

Use of a priori knowledge. TTP’s sparse 
time base is a globally synchronized time 
lattice that restricts to lattice points the 
events under the computer’s control - 
for example, the sending and receiving 
of messages (see the sidebar, “Sparse 
time versus dense time”). The time- 
triggered architecture lets us design many 
such events into the system a priori. 

Sparse time versus dense time 

On a dense time base, an event can occur at an arbitrary point in time, be 
observed by more than one node of a distributed real-time system, and be as- 
signed different time stamps - even if all clocks are properly synchronized.’ 
The observing nodes avoid confusion by executing an explicit agreement pro- 
tocol to settle on a stngte time stamp. However, execution of an agreement 
protocol requites additional time and communication bandwidth, thus reduc- 
ing system responsiveness. To avoid this overhead, we restrict event occur- 
rences to proper subsections of the timeline; we call this a sparse rime base. 

We determine the sparseness of.TTP’s time base, or the basic time gran- 
ule, by the precision of the internal clock synchronization. This in turn de- 
pends on the communication channel’s parameters, the quartz crystals’ quali- 
ty, and the synchronization algorithm. In the envisioned TTP environment, 
this precision is on the order of a few microseconds. A  time granularity in this 
range would have tittte effect on the macroscopic system properties, which 
are in the millisecond range. 

The system can restrict to subsections of the time line only events under its 
control - for example, the sending of messages or the activations of tasks. It 
cannot restrict events in the environment (outside the computer) and failure 
events. In ease the eame external event is observed by more than one node, 
say, in a redundant arrangement for fault tolerance, we pmvide explicit agree- 
ment protocols at the interface between the system and its environment. 

Because TTP assumes fail-silent nodes that produce correct results (in the 
value and time domains) or no results at all, a failure event that can occur at 
any time on a dense time base manifests itself in the time-triggered architec- 
ture as an omission failure: The expected message does not arrive at the a 
priori known time. TTP thus consistently recognizes on the sparse time base 
all failure events covered by the fault hypothesis, without the need for agree- 
ment protocols. 
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TTP lets us take advantage of the 
communication medium’s broadcast 
facility. We know a priori that every 
correct member of the ensemble will 
“hear” every frame transmitted by a 
correct sender. Hence, we use a simpli- 
fied acknowledgment scheme. As soon 
as one receiver has acknowledged a 
message from a sender, all those receiv- 
ing the acknowledgment can conclude 
that the message has been sent correctly 
and that all correct receivers have re- 
ceived it. To make the acknowledgment 
scheme fault tolerant, we introduce re- 
dundancy. 

This line of reasoning is valid as long 
as the probability of successive asym- 
metrical communication failures is neg- 
ligible. Experimental evidence from the 
observation of more than 1 billion mes- 
sages shows that even the occurrence of 
a single asymmetrical communication 
failure is very unlikely. 

Protocol description 

State agreement. A receiver can inter- 
pret the frame sent by a sender only if 
sender and receiver agree about the con- 
troller state at the time of sending and 
receiving. In TTP, this controller state 
(the C state) consists of three fields: 
mode, time, and membership. The mode 
field identifies the system’s current op- 
erational mode. Every operational mode 
has its own (statically assigned) TDMA 
sequence, message/frame format, and 
static task schedule. The time field rep- 
resents the global internal time. It also 
denotes the position of control within 
the cyclic mode. The membership field 
reveals which FTUs have been active 
and inactive at their last membership 
point. An FTU’s membership points are 
the a priori known points in time when 
its nodes are supposed to send messages. 

To enforce agreement on the C state 
without having to include it in each 
frame, TTP uses an innovative tech- 
nique for cyclic-redundancy-check cal- 
culation: It calculates the CRC over the 
frame contents concatenated with the C 
state. If the CRCcheck at the receiver is 
negative, either the frame has been 
mutilated or there is a disagreement 
between the sender’s and receiver’s C 
states. In both cases, the frame is 
discarded. 

If a node does not receive any mes- 
sage from a sending FTU because its 
incoming link has failed, it assumes that 
the sending FTU has crashed and elim- 
inates the unit from its membership. If, 
however, all other nodes of the system 

A membership service 
is required to detect 

omission failures of the 
incoming and outgoing 
communication links. 

received at least one of these messages, 
they will come to a different conclusion 
about the membership. In such a con- 
flict, the majority’ view wins, and the 
node with the failed input port is elimi- 
nated from the membership. Agreement 
on membership is thus an indirect ac- 
knowledgment of message reception by 
the majority. 

Fail silence. We based TTP on the 
assumption that the communication 
channels have only omission failures 
and the nodes support the fail-silent 
abstraction: They deliver either correct 
results or no results at all. This confines 
errors at the system level. 

If a sender attaches a CRC field to 
each frame, a receiver can detect with a 
sufficiently high probability whether a 
frame has been mutilated in the com- 
munication channel. If the receiver dis- 
cards mutilated frames, the omission 
failure abstraction is implemented for 
the channel. 

Designing fail-silent nodes is more 
complicated. By using space or time 
redundancy, the node implementation 
must ensure that all internal failures are 
detected and the node is turned off be- 
fore it transmits an erroneous message. 
Moreover, a membership service is re- 
quired to detect omission failures of the 
incoming and outgoing communication 
links. 

Design trade-offs. We tilted the de- 
sign trade-off toward optimal usage of 
the available channel bandwidth, even 
at the expense of increased processing 
load at the communication controllers. 
Considering the advances of VLSI tech- 
nology, we feel that in real-time appli- 
cations like automotive electronics, 
the channel’s inherent bandwidth limi- 
tation? are much more severe than 
the limitations in the communication 
controllers’ processing and storage 
capabilities. 

Controller state.The state of the com- 
munication controller (C state) consists 
of a mode field, a time field, and a 
membership field. 

The mode field. The mode field con- 
tains a systemwide unique identifica- 
tion of the current operational mode. 
Each mode is cyclic, repeating itself af- 
ter the mode cycle time. The current 
position within a mode is determined 
by the value of the current time minus 
the mode start time modulo the mode 
cycle time. Attributes associated with a 
mode are 

l the TDMA sequence of the sending 
nodes during the TDMA round of this 
mode; 

l the name and format of each mes- 
sage or frame of each sender at each 
sending point within the mode; 

l a static schedule (dispatcher table) 
to establish, for every point in the 
sparse time base modulo the mode 
cycle time, the task that must be execut- 
ed by each node and the message that 
must be sent on the communication 
channel; and 

l a list of successor modes (a succes- 
sion vector). 

We consider the task dependencies 
(mutual exclusion, precedence, and so 
on) while designing a mode schedule.6 
Each mode’s schedule is developed at 
compile time. There is no need for dy- 
namic synchronization (for example, by 
semaphores). Different modes can 
contain completely different tasks and 
messages. 

The time field. The time field denotes 
the current global time. The granularity 
of the time is a system parameter. 

The membership field. To indicate 
whether each FTU was active or inac- 
tive at its last membership point, the 
membership field has a bit vector of 
membership flags, the length of which is 
equal to the number of FTUs in the 
present mode. 

Frame format. All information trans- 
mitted on the communication channels 
must be properly framed. Between any 
two frames there is an interframe de- 
limiter to help the sender and receiver 
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synchronize. A TTP frame 
has four fields: 

l Start-of-frame field. The 
start of frame identifies the 
beginning of a new frame. 

l Control field. The con- 
trol field has three subfields. 
The first uses one bit to spec- 
ify whether the frame is an c 

Control field &byte data field 

v” Acknowledgment bits 
Mcdechange bits 

lnitization bii 

initialization frame or a nor- Jigure 2. Typical frame format. 
’ 

normal frame is accepted only 
if the sender and the receiver 
have identical C states: They 
agree on mode, time, and 
membership. 

Clock synchronization. In 
TTP, the fault-tolerant inter- 
nal synchronization of the 
local clocks generates a glo- 
bal time basi of known pre- 
cision. External clock syn- 
chronization is not part of 

CRC field 

ma1 frame. An initialization 
frame initializes a node and 
contains in its data field the sending 
node’s C state. Normal frames contain 
the application data in the data field. 
The next subfield changes the mode if 
the field value is unequal to zero and 
specifies an element of the list of the 
current mode’s successor modes. The 
third subfield contains an acknowledg- 
ment for the frames sent by the preced- 
ing FTU. The current membership de- 
termines which unit is the preceding 
FTU. 

the bit length of the basic time granule, 
is 2 bits. 

the protocol, but we can add it by giving 
a node access to an external time base. 

The total frame length for the exam- 
ple in Figure 2, including start-of-frame 
field, CRC, and interframe delimiter, 
is 92 bits. The data efficiency is 69.5 
percent. 

CRC calculation. The 16-bit CRC 
calculation conforms with the CCITT 
standard.’ The CRC fields make it pos- 
sible for the receiver of the frame to 
detect all single-bit errors, all parity 
errors, and all burst errors less than 17 
bits long. The CRC misses 0.0015 per- 
cent of burst errors longer than 16 bits. 

Since the receiver knows a priori the 
time of sending of each frame, the devi- 
ation between the specified send time 
and the observed receive time is an indi- 
cation of the difference between the 
sender’s and receiver’s clocks. Thus, a 
frame need not carry the send-time 
value. 

l Data field. The data field consists of 
the concatenation of one or more mes- 
sages containing application data. The 
mode definition statically determines 
the length of each message and thus the 
data field of each frame. The lengths of 
the data fields of separate frames within 
the same TDMA round can differ. How- 
ever, they must be multiples of a small- 
est data unit, whose length is deter- 
mined by the bit length of the basic time 
granule. The frame has no name field 
because the receiver can infer the mes- 
sage name from the mode field and the 
time of sending. 

TTP performs continuous clock syn- 
chronization without any overhead in 
frame length or frame number by ap- 
plying the fault-tolerant average algo- 
rithm periodically, preferably with hard- 
ware support. 

The CRC calculation is different for 
initialization frames and normal frames. 
If there is an error in the initialization 
bit (the first bit of the control field that 
tells the receiver whether the frame is 
an initialization frame or a normal 
frame), the wrong CRC check will be 
applied and the frame discarded. Since 
a node knows a priori for each mode at 
what points in time initialization frames 
and normal frames will be sent, it can 
detect initialization-field errors by com- 
paring the actual frame type with the 
specified frame type. 

Bus access. The global time controls 
bus access. Depending on the fault- 
tolerance class chosen, an FTU slot will 
have one or two frame slots. If some 
senders have to send more information 
than other senders, their frame lengths 
can be different and their sending slots 
can be repeated more than once in a 
single TDMA round. 

l Cyclic-redundancy-check field. The 
CRC field has a length of two bytes. We 
describe the calculation method later. 

Figure 2 shows a typical TTP frame 
format. The control field has a length of 
1 byte. The mode field (3 bits) allows 
the specification of seven successor 
modes. The length of the acknowledg- 
ment field (4 bits) makes it possible to 
acknowledge each one of the four frames 
sent by an FTU in a Class 3 or Class 4 
configuration. 

For initialization frames, the CRC 
field is calculated over the control field 
concatenated with the data field of the 
frame. The frames are accepted only if 
the receiving node is in the start-up 
phase. 

Membership service. To determine 
which FTUs are active and which inac- 
tive at membership points of the nodes, 
we assume that after an FTU has failed 
it will stay in the failed state for at least 
two TDMA rounds. The join protocol 
must guarantee this property. 

The lengths of the start-of-frame field 
and the interframe delimiter depend on 
the bus-propagation delay, the quality 
of the clock synchronization, and the 
signaling method. For transmission 
speeds below 1 Mbit and a bus length 
below 20meters, the start-of-frame field 
is 1 bit, the interframe delimiter is 3 bits, 
and the basic data unit, determined by 

For normal frames, the CRC field is 
calculated over the C state of the con- 
troller concatenated with the control 
field and the data field of the frame. 
Since the time, mode, and membership 
fields are typically 2 bytes long, the 
CRC will detect all errors in any one of 
these fields with a probability of 100 
percent. If a message-mutilation error 
coincides with a C-state error-a high- 
ly improbable event under the given 
fault assumption-the detection prob- 
ability is still 99.9985 percent. Hence, a 

An FTU gains the right to transmit 
when its transmission slot arrives. It 
then sets its own membership flag in the 
current membership field to one. At the 
beginning of the sending slot, the re- 
ceiving nodes also set the membership 
flag of the current transmitter to one. If 
they receive no correct frame from ei- 
ther one of its replicas during the send- 
ing slot of a sending FTU, then the 
receivers set the membership flag of the 
sending FTU to zero immediately after 
the sending slot has terminated. 

Immediately before its membership 
point, a sending node checks if it is still 
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operating correctly. A node 
operates correctly if 

(1) none of its internal er- 
ror-detection mechanisms 
indicate an error, 

(2) at least one of the 
frames it has sent at its previ- 
ous sending slot has been ac- 
knowledged in the acknowl- 
edgments field of at least one 
of the frames from the suc- 
ceeding FTU, and 

(3) the number of correct 
frames it has accepted dur- 
ing the last TDMA round is 
larger than the number of 
framesit has rejected because 
of an unsuccessful CRC 
check. 

Figure 3. State diagram of a node during start-up and re- 
configuration. 

The second condition makes sure the 
node’s input and output links have 
worked correctly. The third condition 
prevents the formation of cliques - 
that is, the formation of two or more 
disjoint subsets of nodes that agree on 
the C state within their subset only. If, 
within a TDMA round, a receiver dis- 
cards more frames than it accepts, it is 
highly probable that the receiver’s C 
state is not in agreement with the 
majority of C states the sending nodes 
use to calculate their CRC fields. If 
every sending node sends the same 
number of messages during a TDMA 
round, the receiver assumes that its C 
state is in disagreement with the C states 
of the majority and enters the inactive 
state. 

Mode changes let the whole ensem- 
ble of FTUs react to sporadic events 
that require immediate service. The 
maximum guaranteed delay interval 
before a mode change can be activated 
corresponds to the maximum interval 
between two sending slots of an FTU. 
Normally this will be one TDMA round. 
However, if this delay is too long, the 
FTU that can signal a mode change can 
be scheduled more often in the TDMA 
sequence, with a slot that corresponds 
to the minimal frame length (without 
any data field). Such a minimal frame 
slot is sufficient to activate a mode 
change, since the mode-change field is a 
subfield of the control field. 

If there is no traffic on the 
bus during this interval I,, 
the system is performing a 
cold start. The node waits for 
a further interval I,, deter- 
mined by the product of its 
start-up number and a pre- 
specified start-up interval I,. 
This procedure reduces the 
probability of collisions dur- 
ing start-up if all nodes of an 
ensemble power up at the 
same time. After the interval 
I3 elapses, the node sends an 

initialization frame containing its C state. 
It repeats this full procedure until it 
recognizes a frame sent by some other 
node. As soon as four or more nodes are 
active, the node switches from the cen- 
tral clock synchronization algorithm to 
the fault-tolerant average synchroniza- 
tion algorithm. 

If a node does not operate correctly 
immediately before its membership 
point, it does not send a frame and 
becomes inactive. If all nodes of an FTU 
are inactive, the FTU as a whole is inac- 
tive. All correct nodes of the ensemble 
will eliminate an inactive FTU from the 
membership. 

Mode change. At any point, the en- 
semble of FTUs operates in a particular 
mode. To change the mode, an FTU 
alerts all other nodes by specifying the 
successor mode in the mode subfield of 
the control field at its next membership 
point. To reduce the frame overhead, it 
indicates only the position of the suc- 
cessor mode in the statically established 
succession vector. With this coding 
mechanism, there is no protocol- 
inherent limit to the number of modes 
TTP can support. 
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Redundancy management and initial- 
ization. Each node has a unique name 
and start-up number to determine its 
position in the TDMA sequence for the 
cold start. During the generation of the 
static message schedules, the system 
engineer must be assured that some 
nodes send initialization frames period- 
ically. The longest interval between two 
initialization frames determines how 
long a node must wait until it can be 
reintegrated. Also, a node that contains 
an internal state -the history state - 
at its reintegration point must periodi- 
cally broadcast this state so that the 
partner node can read it and resynchro- 
nize its own internal state. If there is no 
internal state at the reintegration point, 
no reintegration message is broadcast. 

Figure 3 shows the state diagram of a 
node. When a node is turned on, it en- 
ters the inactive state and performs a 
self-test. After successful completion of 

the test, it enters the start-up 
state. It resets its local clock 
to zero and monitors the bus 
for a prespecified interval I, 
that is longer than the long- 
est TDMA round of all 
modes. 

If there is traffic on the bus during the 
interval I, + Z3, the node listens until it 
receives an initialization frame. In this 
case, the node is reintegrating itself into 
an operational ensemble. It then up- 
dates its C state with the contents of the 
received initialization frame and partic- 
ipates in the protocol as a listener, up- 
dating its C state regularly. It then waits 
for its FTU partner’s reintegration in- 
formation. In the next phase, it moni- 
tors the traffic on the bus to determine 
if it is an active node or a shadow node. 

If all sending slots in an FTU slot are 
occupied, then the node is a shadow 
node. It updates its internal state and 
performs all calculations without broad- 
casting any output messages. It moni- 
tors the acknowledgment bits of the 
control fields of the succeeding FTU to 
determine if one of its FTU partners has 
failed. If it detects such a failure, it 
occupies the TDMA slot of the failed 
partner node and starts sending frames. 

After a node has sent a frame, it waits 
for the acknowledgment information in 
the control field of the succeeding FTU. 
If none of the frames it has sent is ac- 
knowledged in any of the frames from 
the succeeding FTU, it concludes it has 
failed and deactivates. It then immedi- 
ately starts the reintegration procedure 
already described. In a Class 4 configu- 
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ration with shadow nodes, the shadow the same membership information, and 
partner takes the failed node’s send slot. the same global internal time. 

Temporary blackout handling. Han- 
dling a temporary blackout requires 
three phases: blackout detection, black- 
out monitoring, and recovery from black- 
out. For rapid blackout detection, a node 
continuously monitors the membership 
field. If there is a sudden drop in mem- 
bership - an indication of a temporary 
blackout - then the node changes to 
blackout monitoring mode. In this mode, 
a node sends only initialization messag- 
es and performs, as far as it can, emer- 
gency local control. It continues to mon- 
itor the membership to see if other nodes 
start to recover. If the external distur- 
bance disappears, the membership sta- 
bilizes and the node initiates blackout 
recovery. 

For blackout recovery, the node 
changes to global emergency-service 
mode. If during the emergency service a 
node detects another temporary black- 
out, it reenters the blackout monitoring 
mode. If not, it initializes a further change 
to full-service mode. 

Since TTP monitors the membership 
continuously, blackout handling can be 
very quick - in the millisecond range. 

Protocol characteristics 

TTP derives its main advantages over 
other proposed protocols, such as the 
contention protocols CAN and 51850 or 
the token protocol,4 from temporal en- 
capsulation of the nodes. It also offers 
enough flexibility to make extension or 
changes in degree of redundancy easy. 
Concerning performance, TTP’s mes- 
sage overhead is minimal, and its re- 
sponse time is short. 

Temporal encapsulation of the nodes. 
TTP achieves significant improvements 
in testability, system simulation, and 
determinism through temporal encap- 
sulation of the nodes. In many real-time 
projects, more than half the develop- 
ment resources are spent on testing. 
Real-time system behavior must be test- 
ed in the domains of value and time. 
Here we focus on testing the timeliness. 

CAN, J1850, and token protocols are 
demand driven: They allocate the com- 
munication bandwidth to a particular 
node dynamically on the basis of the 
node’s current demand. It is nearly im- 
possible to determine the peak-load in- 

Since TTP monitors the 
membership continuously, 
blackout handling can be 

very quick - in the 
millisecond range. 

teractions of these demands analytical- 
ly. Therefore, extensive system tests on 
simulated loads are the only way to 
establish confidence in the timeliness. 
Testing on real loads is not sufficient, 
because rare events like a serious fault 
in the controlled object will not occur 
frequently enough in an operational 
environment to gain confidence in the 
system’s peak-load performance. Pre- 
dictable system behavior in rare-event 
situations is of paramount utility in many 
real-time applications. 

In contrast, TTP allocates the com- 
munication bandwidth statically and thus 
encapsulates every node in the domain 
of time. This prevents all uncontrolled 
interactions between the nodes, letting 
us follow a constructive test methodol- 
ogy. First, we test the temporal behav- 
ior of every node in isolation; then, we 
establish the system performance. If 
there is any discrepancy between the 
intended and actual temporal behavior 
at the system level, we can easily find 
the offending node. 

Since TTP’s time base is sparse and 
determined by the granularity of the 
globally synchronized action grid, we 
can observe and reproduce every input 
case exactly in the domains of time and 
value. This significantly reduces the 
number of different execution scenari- 
os we must simulate: Unlike in an event- 
triggered system, the order of the state 
changes within a granule of time is not 
relevant.” 

The implementation of fault toler- 
ance by active redundancy requires rep- 
lica determinism. The replicated nodes 
must perform the same state changes at 
about the same time. To accomplish 
this, TTP guarantees that all correct 
nodes receive the same messages in the 
same order at about the same time. It 
preserves the temporal order of mes- 
sage sending and ensures that these 
nodes will have the same controller state 
- that is, the same operational mode, 

Flexihility.The TDMA sequence and 
TTP data formats are controlled by the 
mode definition. If we add a new FTU 
to a system, we must generate new mode 
definitions that include it. The static 
scheduler6 must check off line whether 
these new modes will meet all the appli- 
cation’s response-time requirements. 

If we modify a task in a mode, we 
must check statically’ whether the new 
task’s maximum response time will fit in 
the old task’s preallocated execution 
slot. If it does, this change will have no 
effect on system-level timing. Other- 
wise, we generate a new static schedule 
for this mode. 

TTP lets us design decomposable sys- 
tems. We can develop each subsystem 
independently and check it against the 
specification in the value and time do- 
mains. Integrating these independently 
developed subsystems is straightforward, 
as our experience with the Mars (Main- 
tainable Real-Time System) architec- 
ture has shown.1° 

This is in drastic contrast to event- 
triggered architectures, where every 
local change in one task can have a 
global effect on the timing of other tasks 
in other nodes. After even minor chang- 
es in an application task, designers must 
reexecute complete regression tests at 
the system level. 

Compatibility. TTP has a predictable 
response time and an unrestricted data- 
field length. Therefore, it is in principle 
compatible with all protocols that have 
an unpredictable response time and a 
restricted data field, such as the auto- 
motive protocols in Classes A and B.4 
When the information needed by a pro- 
tocol is not available in the TTP control 
field, some bytes of the TTP data field 
can carry this additional protocol 
information. The communication con- 
troller can perform the required proto- 
col conversion locally, so clients are not 
aware of the different low-level frame 
formats. 

Flexible redundancy. The l-byte con- 
trol field is sufficient to support all the 
different redundant configuration class- 
es. If a system based on TTP is properly 
configured, we can switch from a Class 
1 to a Class 4 configuration with no 
changes in the application software - 
we need only replicate the hardware 
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Table 3. Message length of varied protocols (in bits). 

Message/Frame Length Token 51850 CAN TTP 

Start of message 1 1 1 1 
ID 16 - 11 0 
Control 0 32 14 4 
Data varies varies varies varies 
Acknowledgment 16 o-57 2 4 
CRC 16 8 16 16 
Interframe 8 3 3 3 
Overhead with acknowledgment 57 varies 47 28 
Overhead without acknowledgment 41 43 na. n.a. 

Table 4. Message loop size. 

Protocol Characteristics Token 518.50 CAN TTP 

Message overhead (in bits) 656 688 752 224 
Token overhead (in bits) 160 - - - 
Message data (in bits) 256 256 256 256 
Total loop (in bits) 1,072 944 1,008 480 
Data efficiency (in percent) 24 27.1 25.3 53.3 

resources. Or we could start with a Class 
4 configuration in a prototype imple- 
mentation, gather information about 
real-life failure rates, and then imple- 
ment a more economical Class 3 or Class 
1 configuration in the product market 
without any change in the application 
software. 

under the assumption that eight nodes 
or FTUs send a 16-message loop with 
32 total message bytes (2 bytes per 
message).4 

Eventually, TTP must be imple- 
mented in a hardware communication 
controller. Therefore, we made a first- 
order estimate of such a controller 
chip’s hardware complexity. 

In TTP, the two messages per node 
are packed into a frame with a 4-byte 
data field. The receiver can derive the 
message name from the time of sending. 
All messages are acknowledged. 

Performance comparison. Compar- 
ing the performance of communication 
protocols that are based on disparate 
architectural paradigms and provide 
different services is a delicate issue. 
Therefore, the tables we present here 
must be interpreted carefully. Time- 
triggered protocols like TTP require 
the same amount of bandwidth inde- 
pendent of the actual demand, whereas 
event-triggered protocols, such as 51850 
or CAN, are demand driven. The token 
protocol lies somewhere between these 
two extremes. 

Response time. Given a 250-Kbps 
channel, the TDMA round of TTP in 
this example is 1.92 ms in a Class 1 or 
Class 2 configuration. This is also the 
worst case delay for a mode switch. For 
a Class 3 or Class 4 configuration with 
four replicated messages, the TDMA 
round is doubled to just below 4 ms. 

The three most innovative aspects of 
TTP are the fault-tolerant clock syn- 
chronization, the membership protocol, 
and the CRC calculation technique. In 
our research on the Mars architecture, 
we implemented a VLSI circuit for clock 
synchronization (the clock synchroni- 
zation unit CSU”), which we have used 
experimentally during the past five years. 
This chip has about 10,000 transistors, 
including all interface circuitry. We are 
sure that the clock synchronization in a 
TTP chip will be simpler. 

The comparison numbers for the to- 
ken protocol, J1850, and CAN are from 
the SAE Handbook.4 For TTP we as- 
sume a Class 2 configuration that will 
tolerate node and frame losses. 

Message length and loop size. Table 3 
shows the message length used by the 
different protocols. Table 4 shows the 
comparative loop sizes measured in bits 

TTP’s global time base makes it pos- 
sible to synchronize the time of sam- 
pling the data with the arrival of the 
TDMA slot at the sampling node. There- 
fore, TTP’s guaranteed data delay is 
normally much less than the full TDMA 
round. In a well-designed static sched- 
ule, this data delay can be one or two 
FTU slots; for the example considered 
above, this is on the order of 0.1 ms. 
With a token protocol, the delay be- 
tween the sampling point and the trans- 
mission point cannot be synchronized 
and can thus vary by a full token rota- 
tion time. 

The membership protocol is concep- 
tually unsophisticated. The innovative 
technique of CRC calculation and the 
counting of the successful and unsuc- 
cessful frame receptions can be imple- 
mented in hardware without much ef- 
fort. TTP’s conflict-free media-access 
protocol simplifies the interface at the 
signaling level and makes the protocol 
scalable to very high transmission speeds. 
The other TTP functions are standard 
and found in almost any communica- 
tion controller. We therefore estimate 
that the complexity of a TTP controller 
chip with the two redundant I/O chan- 
nels is less than 100,000 transistors, ex- 
cluding the memory. Because the present 
level of VLSI integration is far beyond 
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Implementation considerations. To 
give the implementer freedom to select 
the transmission medium best suited 
for an application, this protocol does 
not specify the medium or signaling 
method. In fact, there are no restric- 
tions on the signaling method because 
TTP is not an arbitration-based proto- 
col. An encoding technique such as 
modified frequency modulation, which 
has fewer than one transition per bit, 
can be used to increase the channel 
capacity on twisted pairs. TTP also scales 
well to high transmission speeds for fi- 
ber-optic systems since it requires no 
bit-wise arbitration. 

We can realize the interface between 
a host computer and the TTP controller 
with a dual-ported RAM that contains 
the control registers for the TTP con- 
troller, the descriptor fields of the modes, 
and the memory for the incoming and 
outgoing data objects. The present glo- 
bal time and the recent history of mem- 
bership fields are available in special 
registers. 



1 million transistors, it seems technical- 
ly possible to integrate a TTP controller 
into a single-chip microcomputer. 

0 nly time-triggered architectures 
can provide the predictable 
performance needed in distrib- 

uted real-time control systems. The 
Time-Triggered Protocol we presented 
here provides all the necessary services. 
We have implemented and experimen- 
tally checked the protocol on the Mars 
architecture, and are now designing and 
evaluating a detailed reliability model. 
In the near future, we hope to imple- 
ment TTP as part of a single-chip VLSI 
microcomputer. n 
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