
TTP - A Protocol
for Fault-Tolerant
Real-Time Systems

Hermann Kopetz, Technical University of Vienna

Giinter Griinsteidl, Alcatel Austria Research Center

The Time-Triggered
Protocol integrates

such services as
predictable message
transmission, clock

synchronization,
membership, mode

change, and blackout
handling. It also

supports replicated
nodes and replicated

communication
channels.

eal-time control systems must share critical information among autono-
mous subsystems in a timely and reliable manner. For example, automo-
tive applications have separate subsystems for engine and transmission

control. Given a specified load and fault hypothesis, the computer architecture
must assure a predictable and small bounded maximum latency between a stimulus
from and a response to the environment. Furthermore, it must support the
implementation of fault tolerance by active redundancy.

Two fundamentally different paradigms for the design of real-time systems are
event-triggered architectures and time-triggered architectures (see the sidebar,
“Time-triggered real-time architectures”). In an event-triggered architecture, all
activities - task activation, communication, and so on - are initiated as conse-
quences of events (significant state changes). Because event-triggered architec-
tures make all scheduling and communication decisions on line, they are some-
times called dynamic architectures or interrupt-driven architectures.

Time-triggered architectures, on the other hand, are driven by the progression
of the global time.’ All tasks and communication actions are periodic, and external
state variables are sampled at predefined points in time. Time-triggered archi-
tectures are based on stronger regularity assumptions than event-triggered
architectures and are therefore less flexible but easier to analyze and test. If the
real-time system is time-triggered, then, as we show later, we know how to solve
problems of replica determinism, systematic testing for timeliness, and timely
membership service.

The Time-Triggered Protocol (TTP) we present here is an integrated communi-
cation protocol for time-triggered architectures. It provides the services required
for the implementation of a fault-tolerant real-time system: predictable message
transmission, message acknowledgment in group communication, clock synchro-
nization, membership, rapid mode changes, and redundancy management. It
implements these services without extra messages and with only a small overhead
in the message size.

14 001%9162/94/‘%4 00 CT 1994 IEEE COMPUTER

In this article we describe our archi- Architectural
tectural assumptions, fault hypothesis,
and objectives for the TTP protocol. characteristics
After we elaborate on its rationale, we
give a detailed protocol description. We Rapid periodic message exchanges
also discuss TTP characteristics and form the bulk of the load in a time-
compare its performance with that of triggered architecture. However, a
other protocols proposed for control time-triggered architecture also uses
applications. sporadic event-triggered communica-

tion with predictable small latency -
for example, when it rapidly switches to
an emergency mode.

System structure. The distributed
computer system for which we devel-
oped TTP consists of fail-silent nodes
connected by two replicated broadcast
communication channels. (As we ex-

Time-triggered real-time architectures

Every real-time system has to provide the specified time-
ly service to its environment. To meet this requirement,
there are two fundamentally different paradigms: the event-
triggered approach and the time-triggered approach.’

In an event-triggered system, a significant event in the
environment or computer triggers the start of the corre-
sponding system activity - for example, the activation of a
task or the transmission of a message. Normally, the inter-
rupt mechanism signals significant events to the operating
system. Based on the evolving request scenario, the oper-
ating system dynamically determines the order of task exe-
cutions to meet the specified deadlines.

A time-triggered system initiates all system activities -
task activation, message transmission, and the recognition
of message arrival - as the real-time clock reaches prede-
termined values. Ideally, a time-triggered operating system
recognizes a single interrupt signal: the ticks generated by
the local clock at predetermined points in time. It performs
a table lookup to determine the task to activate at each
point. A distributed time-triggered system must synchronize
the local clocks to represent a globally synchronized time
base of specified precision.2

Let’s compare event-triggered and time-triggered imple-
mentations of an elevator-control system in a high-rise
building with many parallel elevators. In an event-triggered
implementation, each push of an elevator-call button by a
client signals the elevator-control system via an interrupt.
The control system then immediately decides which eleva-
tor is to serve the pending request.

A time-triggered implementation scans the elevator-call
buttons periodically, say, every second. It treats all buttons
pushed in the last second equally. Based on the result of
this scan, the elevator-control system generates a new ele-
vator schedule every second.

In a low-load scenario where a button is pressed only
every few seconds, the event-triggered implementation is
more responsive than the time-triggered implementation.
However, in a high-load scenario where many buttons are
pressed during each second, the time-triggered implemen-
tation requires less organizational overhead (fewer interrupt
service and scheduler calls) and provides better and more
predictable service.

With a time-triggered architecture, we know a priori (and
design into all nodes) much information about the system’s
future behavior - for example, which node must send what
type of message at a particular time. The TTP protocol we
present in this article makes good use of this a priori infor-

January 1994

mation. For example, the message and sender name do
not have to be part of the frame, since nodes can retrieve
this information using the point in time when the frame is
sent. Also, for error detection, a receiving node can deter-
mine a frame is missing immediately after the anticipated
arrival time has elapsed, without the exchange of any ac-
knowledgment information.

The subsystems of a time-triggered architecture are
temporally encapsulated by the time-division multiple-
access protocol. Since every subsystem in a time-
triggered architecture generates its control signals locally
from the progression of its local clock, a time-triggered
architecture has no control signals crossing subsystem
interfaces. Time-triggered systems are therefore more
robust and testable than event-triggered systems, but they
require more planning and are less flexible. In the elevator
application, it is impossible to overload the time-triggered
computer system by too many pushes of the call buttons
-the ftow control is implicit. An event-triggered impte-
mentation requires a special mechanism to protect the
computer from external overload - the flow control is
explicit.

The implementation of active redundancy requires that
all replicas visit the same state at about the same time
(replica determinism). Since time-triggered systems avoid
preemptive dynamic scheduling decisions, they can
maintain replica determinism without special agreement
protocols.

Safety-critical real-time computer applications for flight
control, nuclear power plant shutdown, and so on, have
to be fault tolerant and are therefore based on the time-
triggered paradigm. For example, the control system
for Japan’s Shinkansen bullet train uses a large time-
triggered fault-tolerant system.3

References

1, H. Kopetz, “Should Responsive Systems Be EventFTriggered or
Time-Triggered?” lf/CE Trans. on Electronics, Inst. of Electronics,
Information, and Comm. Engineers, Tokyo, Japan, Vol. E76-C,
No. 11, Nov. 1993.

2. H. Kopetz and W. Ochsenreiter, “Clock Synchronization in Distrib-
uted Real-Time Systems,” LEEE Trans. Compufers, Vol. 36, No. 8,
Aug. 1987, pp. 933-940.

3. A. Hachiga, “The Concepts and Technologies of Dependable and
Real-Time Computer Systems for Shinkansen Train Control,” Re-
sponsive Computer Systems, Vol. 7 of Dependable Computing
and Fault-Tolerant Systems, Springer-Verlag. Berlin, 1993, pp.
225-252.

15

Table 1. Failure rates.

Failure Type Failure Rate
(IO-“/hour)

Permanent node
failure

Permanent channel
failure

Transient node
failure

Transient channel
failure

102

104

lo’

lo6

plain later, fail-silent nodes deliver ei-
ther correct results or no results at all.)
To tolerate node failure, a system engi-
neer can replicate nodes.? It can also
group nodes into fault-tolerant units
(FTUs),j which provide one of several
levels of fault-tolerant service to their
clients. The time-triggered architecture
guarantees that replicated nodes per-
form the same state changes at about
the same time. As long as at least one
node of an FTU isoperational, the whole
unit is considered operational. TTP syn-
chronizes the nodes’ real-time clocks to
within a known precision.

Each node has a communication con-

troller with two bidirectional communi-
cation ports connected to the two repli-
cated broadcast channels. Interface
nodes have an additional interface to
sensors or transducers in the environ-
ment. Also. each node has error-
detection mechanisms so it can termi-
nate operation in case of an error.

A communication channel is a pas-
sive local area network - a broadcast
bus-that transports one message at a
time. Access to the communication
channel is determined by a time-
division multiple-access (TDMA) sche-
ma controlled by the TTP-generated
global time. We call a complete cycle,
during which each FTU has been grant-
ed at least one sending access, a TDMA
round.

Fault hypothesis. We assume that node
failures are fail silent and channel fail-
ures are omission failures. Table 1 gives
the orders of magnitude for the assumed
failure rates.

Although the transient channel-
failure rate of 0.001 per hour looks
high, it is still low if considered on a per-
message basis. If the system propagates
1,000 messages per second. the tran-
sient message-failure rate is still smaller
than lo-” corrupted messages per mes-

Class 1 configuration

Class 2 and Class 3 configurations

sage. If the independence assumption
holds, the probability of two or more
message losses within a single TDMA
round is very low.

During temporary blackout periods,
the transient failure rates of the nodes
and channels can be significantly higher
than these failure rates.

System configurations. We call the
bit packet transported on the physical
level a frame. A frame can contain one
or more application messages. Starting
with the least fault tolerant, Table 2
presents data for four classes of system
configurations:’

*Class 1: One node per FTU, two
frames per FTU.

l Class 2: Two active nodes per FTU,
two frames per FTU.

l Class 3: Two active nodes per FTU,
four frames per FTU.

l Class 4: Two active nodes and one
shadow node per FTU, four frames
per FTU.

Figure 1 shows the configurations. A
shadow node in a Class 4 architecture
receives all input messages but does not
produce any output as long as the FTU’s
other two nodes are operational. If a
node fails, the shadow node takes its
right to send and produces output.

We select the system-configuration
class for an application on the basis of
the dependability we want and the fail-
ure rates we assume. For example, a
Class 1 configuration may be appropri-
ate if most failures are in the cabling
(interconnectors and contacts).

Protocol objectives

We intended TTP for Class C safety-
critical automotive applications? real-
time control activities requiring guar-
anteed timeliness and fault tolerance.
Our objective was a protocol that inte-
grated all services needed in such

I applications:

Figure 1.
Fault-tolerant

configurations.

Table 2. Levels of fault tolerance (in terms of the number of tolerated node failures or frame losses).

Failure Type Class 1

Permanent node failure 0
Permanent communication failure 1
Transient node failure 0

Transient communication failure 1 of2

Class 2

1
1

l/recovery
interval

1 of2

Class 3

1
1

l/recovery
interval

3 of4

Class 4

2
1

l/TDMA
round
3of4

16

l Message transport with predictable
low latency. In a real-time system, the
duration of the protocol execution af-
fects the temporal accuracy of informa-
tion. A real-time protocol’s execution
time must have a low maximum and
small variability under all specified load
and fault conditions. The protocol must
handle time-triggered periodic mes-
sages and event-triggered sporadic
messages.

l Fault tolerance. The protocol should
tolerate all transient and permanent
node and channel failures listed in the
fault hypothesis without violating the
functional or temporal specifications.
Standard communication protocols pro-
vide error detection at the sender’s site.
In real-time applications, communica-
tion errors that cannot be masked by
redundancy should be detected at the
receiving site as well as at the sending
site with minimal error-detection
latency.

l Temporary blackout handling. A
temporary blackout is the temporary
interference of the control system’s op-
eration by some powerful external dis-
turbance, causing correlated failure of a
set of nodes. The protocol should detect
and handle temporary blackouts
promptly.

l Clock synchronization. Because or-
dinary local clocks are not perfect, the
establishment of a global time base with
known precision is crucial. When times
on local clocks drift apart, the protocol
must implement a resynchronization
strategy.

l Membership service. A membership
service gives all nodes consistent infor-
mation about present and absent nodes5
In TTP the membership service is the
basis for the implementation of atomic-
multicast and redundancy-management
protocols. It also detects incoming and
outgoing link failures to implement the
fail-silent abstraction of nodes.

l Distributed redundancy manage-
ment. A redundancy-management pro-
tocol must remove failed nodes and re-
integrate spare and repaired nodes. A
distributed system distributes the re-
dundancy management itself to avoid a
single point of failure.

aSupport for rapid mode change.
Real-time applications have different
operational modes: start-up, normal
operation, emergency, and so on. The
protocol should support rapid change
from one mode to another consistently
at all nodes.

January 1994

-

l Minimal overhead. Many real-time
applications (for example, automotive
electronics) have limited communica-
tion bandwidth. The protocol should
provide the specified service with min-
imal overhead, both in message length
and number of messages.

. Utmost flexibility without compro-
mising predictability. Flexibility and
predictability are competing goals. The
protocol should provide utmost flexi-
bility while maintaining determinism:
the analytical predictability of the
timeliness. The protocol should be
scalable to high data rates. It should
operate efficiently on twisted wires as
well as optical fibers, to be scalable to
different data rates and to be indepen-
dent of the transmission medium. The
economic benefits of a real-time pro-
tocol operating efficiently on twisted
wires are very significant for automo-
tive applications.

Design rationale

TTP is an integrated protocol that pro-
vides these services without the strict
separation of concerns proposed in the
layered Open Systems Interconnection
model. The OS1 model is excellent
conceptually for reasoning about differ-
ent design issues. However, timeliness is
not one of its goals, and it is inadequate
as an implementation model for time-
critical protocols.

Use of a priori knowledge. TTP’s sparse
time base is a globally synchronized time
lattice that restricts to lattice points the
events under the computer’s control -
for example, the sending and receiving
of messages (see the sidebar, “Sparse
time versus dense time”). The time-
triggered architecture lets us design many
such events into the system a priori.

Sparse time versus dense time

On a dense time base, an event can occur at an arbitrary point in time, be
observed by more than one node of a distributed real-time system, and be as-
signed different time stamps - even if all clocks are properly synchronized.’
The observing nodes avoid confusion by executing an explicit agreement pro-
tocol to settle on a stngte time stamp. However, execution of an agreement
protocol requites additional time and communication bandwidth, thus reduc-
ing system responsiveness. To avoid this overhead, we restrict event occur-
rences to proper subsections of the timeline; we call this a sparse rime base.

We determine the sparseness of.TTP’s time base, or the basic time gran-
ule, by the precision of the internal clock synchronization. This in turn de-
pends on the communication channel’s parameters, the quartz crystals’ quali-
ty, and the synchronization algorithm. In the envisioned TTP environment,
this precision is on the order of a few microseconds. A time granularity in this
range would have tittte effect on the macroscopic system properties, which
are in the millisecond range.

The system can restrict to subsections of the time line only events under its
control - for example, the sending of messages or the activations of tasks. It
cannot restrict events in the environment (outside the computer) and failure
events. In ease the eame external event is observed by more than one node,
say, in a redundant arrangement for fault tolerance, we pmvide explicit agree-
ment protocols at the interface between the system and its environment.

Because TTP assumes fail-silent nodes that produce correct results (in the
value and time domains) or no results at all, a failure event that can occur at
any time on a dense time base manifests itself in the time-triggered architec-
ture as an omission failure: The expected message does not arrive at the a
priori known time. TTP thus consistently recognizes on the sparse time base
all failure events covered by the fault hypothesis, without the need for agree-
ment protocols.

Reference

1. H. Kopetz, “Sparse Time Versus Dense Time in Distributed Real-Time Systems,” 12fb
/r?f’/ Conf. Distributed Compufhg Systems, IEEE CS Press, Los Alamitos. Calif., Order
No. 2885, 1992, pp. 460-467.

17

TTP lets us take advantage of the
communication medium’s broadcast
facility. We know a priori that every
correct member of the ensemble will
“hear” every frame transmitted by a
correct sender. Hence, we use a simpli-
fied acknowledgment scheme. As soon
as one receiver has acknowledged a
message from a sender, all those receiv-
ing the acknowledgment can conclude
that the message has been sent correctly
and that all correct receivers have re-
ceived it. To make the acknowledgment
scheme fault tolerant, we introduce re-
dundancy.

This line of reasoning is valid as long
as the probability of successive asym-
metrical communication failures is neg-
ligible. Experimental evidence from the
observation of more than 1 billion mes-
sages shows that even the occurrence of
a single asymmetrical communication
failure is very unlikely.

Protocol description

State agreement. A receiver can inter-
pret the frame sent by a sender only if
sender and receiver agree about the con-
troller state at the time of sending and
receiving. In TTP, this controller state
(the C state) consists of three fields:
mode, time, and membership. The mode
field identifies the system’s current op-
erational mode. Every operational mode
has its own (statically assigned) TDMA
sequence, message/frame format, and
static task schedule. The time field rep-
resents the global internal time. It also
denotes the position of control within
the cyclic mode. The membership field
reveals which FTUs have been active
and inactive at their last membership
point. An FTU’s membership points are
the a priori known points in time when
its nodes are supposed to send messages.

To enforce agreement on the C state
without having to include it in each
frame, TTP uses an innovative tech-
nique for cyclic-redundancy-check cal-
culation: It calculates the CRC over the
frame contents concatenated with the C
state. If the CRCcheck at the receiver is
negative, either the frame has been
mutilated or there is a disagreement
between the sender’s and receiver’s C
states. In both cases, the frame is
discarded.

If a node does not receive any mes-
sage from a sending FTU because its
incoming link has failed, it assumes that
the sending FTU has crashed and elim-
inates the unit from its membership. If,
however, all other nodes of the system

A membership service
is required to detect

omission failures of the
incoming and outgoing
communication links.

received at least one of these messages,
they will come to a different conclusion
about the membership. In such a con-
flict, the majority’ view wins, and the
node with the failed input port is elimi-
nated from the membership. Agreement
on membership is thus an indirect ac-
knowledgment of message reception by
the majority.

Fail silence. We based TTP on the
assumption that the communication
channels have only omission failures
and the nodes support the fail-silent
abstraction: They deliver either correct
results or no results at all. This confines
errors at the system level.

If a sender attaches a CRC field to
each frame, a receiver can detect with a
sufficiently high probability whether a
frame has been mutilated in the com-
munication channel. If the receiver dis-
cards mutilated frames, the omission
failure abstraction is implemented for
the channel.

Designing fail-silent nodes is more
complicated. By using space or time
redundancy, the node implementation
must ensure that all internal failures are
detected and the node is turned off be-
fore it transmits an erroneous message.
Moreover, a membership service is re-
quired to detect omission failures of the
incoming and outgoing communication
links.

Design trade-offs. We tilted the de-
sign trade-off toward optimal usage of
the available channel bandwidth, even
at the expense of increased processing
load at the communication controllers.
Considering the advances of VLSI tech-
nology, we feel that in real-time appli-
cations like automotive electronics,
the channel’s inherent bandwidth limi-
tation? are much more severe than
the limitations in the communication
controllers’ processing and storage
capabilities.

Controller state.The state of the com-
munication controller (C state) consists
of a mode field, a time field, and a
membership field.

The mode field. The mode field con-
tains a systemwide unique identifica-
tion of the current operational mode.
Each mode is cyclic, repeating itself af-
ter the mode cycle time. The current
position within a mode is determined
by the value of the current time minus
the mode start time modulo the mode
cycle time. Attributes associated with a
mode are

l the TDMA sequence of the sending
nodes during the TDMA round of this
mode;

l the name and format of each mes-
sage or frame of each sender at each
sending point within the mode;

l a static schedule (dispatcher table)
to establish, for every point in the
sparse time base modulo the mode
cycle time, the task that must be execut-
ed by each node and the message that
must be sent on the communication
channel; and

l a list of successor modes (a succes-
sion vector).

We consider the task dependencies
(mutual exclusion, precedence, and so
on) while designing a mode schedule.6
Each mode’s schedule is developed at
compile time. There is no need for dy-
namic synchronization (for example, by
semaphores). Different modes can
contain completely different tasks and
messages.

The time field. The time field denotes
the current global time. The granularity
of the time is a system parameter.

The membership field. To indicate
whether each FTU was active or inac-
tive at its last membership point, the
membership field has a bit vector of
membership flags, the length of which is
equal to the number of FTUs in the
present mode.

Frame format. All information trans-
mitted on the communication channels
must be properly framed. Between any
two frames there is an interframe de-
limiter to help the sender and receiver

18 COMPUTER

synchronize. A TTP frame
has four fields:

l Start-of-frame field. The
start of frame identifies the
beginning of a new frame.

l Control field. The con-
trol field has three subfields.
The first uses one bit to spec-
ify whether the frame is an c

Control field &byte data field

v” Acknowledgment bits
Mcdechange bits

lnitization bii

initialization frame or a nor- Jigure 2. Typical frame format.
’

normal frame is accepted only
if the sender and the receiver
have identical C states: They
agree on mode, time, and
membership.

Clock synchronization. In
TTP, the fault-tolerant inter-
nal synchronization of the
local clocks generates a glo-
bal time basi of known pre-
cision. External clock syn-
chronization is not part of

CRC field

ma1 frame. An initialization
frame initializes a node and
contains in its data field the sending
node’s C state. Normal frames contain
the application data in the data field.
The next subfield changes the mode if
the field value is unequal to zero and
specifies an element of the list of the
current mode’s successor modes. The
third subfield contains an acknowledg-
ment for the frames sent by the preced-
ing FTU. The current membership de-
termines which unit is the preceding
FTU.

the bit length of the basic time granule,
is 2 bits.

the protocol, but we can add it by giving
a node access to an external time base.

The total frame length for the exam-
ple in Figure 2, including start-of-frame
field, CRC, and interframe delimiter,
is 92 bits. The data efficiency is 69.5
percent.

CRC calculation. The 16-bit CRC
calculation conforms with the CCITT
standard.’ The CRC fields make it pos-
sible for the receiver of the frame to
detect all single-bit errors, all parity
errors, and all burst errors less than 17
bits long. The CRC misses 0.0015 per-
cent of burst errors longer than 16 bits.

Since the receiver knows a priori the
time of sending of each frame, the devi-
ation between the specified send time
and the observed receive time is an indi-
cation of the difference between the
sender’s and receiver’s clocks. Thus, a
frame need not carry the send-time
value.

l Data field. The data field consists of
the concatenation of one or more mes-
sages containing application data. The
mode definition statically determines
the length of each message and thus the
data field of each frame. The lengths of
the data fields of separate frames within
the same TDMA round can differ. How-
ever, they must be multiples of a small-
est data unit, whose length is deter-
mined by the bit length of the basic time
granule. The frame has no name field
because the receiver can infer the mes-
sage name from the mode field and the
time of sending.

TTP performs continuous clock syn-
chronization without any overhead in
frame length or frame number by ap-
plying the fault-tolerant average algo-
rithm periodically, preferably with hard-
ware support.

The CRC calculation is different for
initialization frames and normal frames.
If there is an error in the initialization
bit (the first bit of the control field that
tells the receiver whether the frame is
an initialization frame or a normal
frame), the wrong CRC check will be
applied and the frame discarded. Since
a node knows a priori for each mode at
what points in time initialization frames
and normal frames will be sent, it can
detect initialization-field errors by com-
paring the actual frame type with the
specified frame type.

Bus access. The global time controls
bus access. Depending on the fault-
tolerance class chosen, an FTU slot will
have one or two frame slots. If some
senders have to send more information
than other senders, their frame lengths
can be different and their sending slots
can be repeated more than once in a
single TDMA round.

l Cyclic-redundancy-check field. The
CRC field has a length of two bytes. We
describe the calculation method later.

Figure 2 shows a typical TTP frame
format. The control field has a length of
1 byte. The mode field (3 bits) allows
the specification of seven successor
modes. The length of the acknowledg-
ment field (4 bits) makes it possible to
acknowledge each one of the four frames
sent by an FTU in a Class 3 or Class 4
configuration.

For initialization frames, the CRC
field is calculated over the control field
concatenated with the data field of the
frame. The frames are accepted only if
the receiving node is in the start-up
phase.

Membership service. To determine
which FTUs are active and which inac-
tive at membership points of the nodes,
we assume that after an FTU has failed
it will stay in the failed state for at least
two TDMA rounds. The join protocol
must guarantee this property.

The lengths of the start-of-frame field
and the interframe delimiter depend on
the bus-propagation delay, the quality
of the clock synchronization, and the
signaling method. For transmission
speeds below 1 Mbit and a bus length
below 20meters, the start-of-frame field
is 1 bit, the interframe delimiter is 3 bits,
and the basic data unit, determined by

For normal frames, the CRC field is
calculated over the C state of the con-
troller concatenated with the control
field and the data field of the frame.
Since the time, mode, and membership
fields are typically 2 bytes long, the
CRC will detect all errors in any one of
these fields with a probability of 100
percent. If a message-mutilation error
coincides with a C-state error-a high-
ly improbable event under the given
fault assumption-the detection prob-
ability is still 99.9985 percent. Hence, a

An FTU gains the right to transmit
when its transmission slot arrives. It
then sets its own membership flag in the
current membership field to one. At the
beginning of the sending slot, the re-
ceiving nodes also set the membership
flag of the current transmitter to one. If
they receive no correct frame from ei-
ther one of its replicas during the send-
ing slot of a sending FTU, then the
receivers set the membership flag of the
sending FTU to zero immediately after
the sending slot has terminated.

Immediately before its membership
point, a sending node checks if it is still

January 1994 19

operating correctly. A node
operates correctly if

(1) none of its internal er-
ror-detection mechanisms
indicate an error,

(2) at least one of the
frames it has sent at its previ-
ous sending slot has been ac-
knowledged in the acknowl-
edgments field of at least one
of the frames from the suc-
ceeding FTU, and

(3) the number of correct
frames it has accepted dur-
ing the last TDMA round is
larger than the number of
framesit has rejected because
of an unsuccessful CRC
check.

Figure 3. State diagram of a node during start-up and re-
configuration.

The second condition makes sure the
node’s input and output links have
worked correctly. The third condition
prevents the formation of cliques -
that is, the formation of two or more
disjoint subsets of nodes that agree on
the C state within their subset only. If,
within a TDMA round, a receiver dis-
cards more frames than it accepts, it is
highly probable that the receiver’s C
state is not in agreement with the
majority of C states the sending nodes
use to calculate their CRC fields. If
every sending node sends the same
number of messages during a TDMA
round, the receiver assumes that its C
state is in disagreement with the C states
of the majority and enters the inactive
state.

Mode changes let the whole ensem-
ble of FTUs react to sporadic events
that require immediate service. The
maximum guaranteed delay interval
before a mode change can be activated
corresponds to the maximum interval
between two sending slots of an FTU.
Normally this will be one TDMA round.
However, if this delay is too long, the
FTU that can signal a mode change can
be scheduled more often in the TDMA
sequence, with a slot that corresponds
to the minimal frame length (without
any data field). Such a minimal frame
slot is sufficient to activate a mode
change, since the mode-change field is a
subfield of the control field.

If there is no traffic on the
bus during this interval I,,
the system is performing a
cold start. The node waits for
a further interval I,, deter-
mined by the product of its
start-up number and a pre-
specified start-up interval I,.
This procedure reduces the
probability of collisions dur-
ing start-up if all nodes of an
ensemble power up at the
same time. After the interval
I3 elapses, the node sends an

initialization frame containing its C state.
It repeats this full procedure until it
recognizes a frame sent by some other
node. As soon as four or more nodes are
active, the node switches from the cen-
tral clock synchronization algorithm to
the fault-tolerant average synchroniza-
tion algorithm.

If a node does not operate correctly
immediately before its membership
point, it does not send a frame and
becomes inactive. If all nodes of an FTU
are inactive, the FTU as a whole is inac-
tive. All correct nodes of the ensemble
will eliminate an inactive FTU from the
membership.

Mode change. At any point, the en-
semble of FTUs operates in a particular
mode. To change the mode, an FTU
alerts all other nodes by specifying the
successor mode in the mode subfield of
the control field at its next membership
point. To reduce the frame overhead, it
indicates only the position of the suc-
cessor mode in the statically established
succession vector. With this coding
mechanism, there is no protocol-
inherent limit to the number of modes
TTP can support.

20

-

Redundancy management and initial-
ization. Each node has a unique name
and start-up number to determine its
position in the TDMA sequence for the
cold start. During the generation of the
static message schedules, the system
engineer must be assured that some
nodes send initialization frames period-
ically. The longest interval between two
initialization frames determines how
long a node must wait until it can be
reintegrated. Also, a node that contains
an internal state -the history state -
at its reintegration point must periodi-
cally broadcast this state so that the
partner node can read it and resynchro-
nize its own internal state. If there is no
internal state at the reintegration point,
no reintegration message is broadcast.

Figure 3 shows the state diagram of a
node. When a node is turned on, it en-
ters the inactive state and performs a
self-test. After successful completion of

the test, it enters the start-up
state. It resets its local clock
to zero and monitors the bus
for a prespecified interval I,
that is longer than the long-
est TDMA round of all
modes.

If there is traffic on the bus during the
interval I, + Z3, the node listens until it
receives an initialization frame. In this
case, the node is reintegrating itself into
an operational ensemble. It then up-
dates its C state with the contents of the
received initialization frame and partic-
ipates in the protocol as a listener, up-
dating its C state regularly. It then waits
for its FTU partner’s reintegration in-
formation. In the next phase, it moni-
tors the traffic on the bus to determine
if it is an active node or a shadow node.

If all sending slots in an FTU slot are
occupied, then the node is a shadow
node. It updates its internal state and
performs all calculations without broad-
casting any output messages. It moni-
tors the acknowledgment bits of the
control fields of the succeeding FTU to
determine if one of its FTU partners has
failed. If it detects such a failure, it
occupies the TDMA slot of the failed
partner node and starts sending frames.

After a node has sent a frame, it waits
for the acknowledgment information in
the control field of the succeeding FTU.
If none of the frames it has sent is ac-
knowledged in any of the frames from
the succeeding FTU, it concludes it has
failed and deactivates. It then immedi-
ately starts the reintegration procedure
already described. In a Class 4 configu-

COMPUTER

ration with shadow nodes, the shadow the same membership information, and
partner takes the failed node’s send slot. the same global internal time.

Temporary blackout handling. Han-
dling a temporary blackout requires
three phases: blackout detection, black-
out monitoring, and recovery from black-
out. For rapid blackout detection, a node
continuously monitors the membership
field. If there is a sudden drop in mem-
bership - an indication of a temporary
blackout - then the node changes to
blackout monitoring mode. In this mode,
a node sends only initialization messag-
es and performs, as far as it can, emer-
gency local control. It continues to mon-
itor the membership to see if other nodes
start to recover. If the external distur-
bance disappears, the membership sta-
bilizes and the node initiates blackout
recovery.

For blackout recovery, the node
changes to global emergency-service
mode. If during the emergency service a
node detects another temporary black-
out, it reenters the blackout monitoring
mode. If not, it initializes a further change
to full-service mode.

Since TTP monitors the membership
continuously, blackout handling can be
very quick - in the millisecond range.

Protocol characteristics

TTP derives its main advantages over
other proposed protocols, such as the
contention protocols CAN and 51850 or
the token protocol,4 from temporal en-
capsulation of the nodes. It also offers
enough flexibility to make extension or
changes in degree of redundancy easy.
Concerning performance, TTP’s mes-
sage overhead is minimal, and its re-
sponse time is short.

Temporal encapsulation of the nodes.
TTP achieves significant improvements
in testability, system simulation, and
determinism through temporal encap-
sulation of the nodes. In many real-time
projects, more than half the develop-
ment resources are spent on testing.
Real-time system behavior must be test-
ed in the domains of value and time.
Here we focus on testing the timeliness.

CAN, J1850, and token protocols are
demand driven: They allocate the com-
munication bandwidth to a particular
node dynamically on the basis of the
node’s current demand. It is nearly im-
possible to determine the peak-load in-

Since TTP monitors the
membership continuously,
blackout handling can be

very quick - in the
millisecond range.

teractions of these demands analytical-
ly. Therefore, extensive system tests on
simulated loads are the only way to
establish confidence in the timeliness.
Testing on real loads is not sufficient,
because rare events like a serious fault
in the controlled object will not occur
frequently enough in an operational
environment to gain confidence in the
system’s peak-load performance. Pre-
dictable system behavior in rare-event
situations is of paramount utility in many
real-time applications.

In contrast, TTP allocates the com-
munication bandwidth statically and thus
encapsulates every node in the domain
of time. This prevents all uncontrolled
interactions between the nodes, letting
us follow a constructive test methodol-
ogy. First, we test the temporal behav-
ior of every node in isolation; then, we
establish the system performance. If
there is any discrepancy between the
intended and actual temporal behavior
at the system level, we can easily find
the offending node.

Since TTP’s time base is sparse and
determined by the granularity of the
globally synchronized action grid, we
can observe and reproduce every input
case exactly in the domains of time and
value. This significantly reduces the
number of different execution scenari-
os we must simulate: Unlike in an event-
triggered system, the order of the state
changes within a granule of time is not
relevant.”

The implementation of fault toler-
ance by active redundancy requires rep-
lica determinism. The replicated nodes
must perform the same state changes at
about the same time. To accomplish
this, TTP guarantees that all correct
nodes receive the same messages in the
same order at about the same time. It
preserves the temporal order of mes-
sage sending and ensures that these
nodes will have the same controller state
- that is, the same operational mode,

Flexihility.The TDMA sequence and
TTP data formats are controlled by the
mode definition. If we add a new FTU
to a system, we must generate new mode
definitions that include it. The static
scheduler6 must check off line whether
these new modes will meet all the appli-
cation’s response-time requirements.

If we modify a task in a mode, we
must check statically’ whether the new
task’s maximum response time will fit in
the old task’s preallocated execution
slot. If it does, this change will have no
effect on system-level timing. Other-
wise, we generate a new static schedule
for this mode.

TTP lets us design decomposable sys-
tems. We can develop each subsystem
independently and check it against the
specification in the value and time do-
mains. Integrating these independently
developed subsystems is straightforward,
as our experience with the Mars (Main-
tainable Real-Time System) architec-
ture has shown.1°

This is in drastic contrast to event-
triggered architectures, where every
local change in one task can have a
global effect on the timing of other tasks
in other nodes. After even minor chang-
es in an application task, designers must
reexecute complete regression tests at
the system level.

Compatibility. TTP has a predictable
response time and an unrestricted data-
field length. Therefore, it is in principle
compatible with all protocols that have
an unpredictable response time and a
restricted data field, such as the auto-
motive protocols in Classes A and B.4
When the information needed by a pro-
tocol is not available in the TTP control
field, some bytes of the TTP data field
can carry this additional protocol
information. The communication con-
troller can perform the required proto-
col conversion locally, so clients are not
aware of the different low-level frame
formats.

Flexible redundancy. The l-byte con-
trol field is sufficient to support all the
different redundant configuration class-
es. If a system based on TTP is properly
configured, we can switch from a Class
1 to a Class 4 configuration with no
changes in the application software -
we need only replicate the hardware

January 1994 21

Table 3. Message length of varied protocols (in bits).

Message/Frame Length Token 51850 CAN TTP

Start of message 1 1 1 1
ID 16 - 11 0
Control 0 32 14 4
Data varies varies varies varies
Acknowledgment 16 o-57 2 4
CRC 16 8 16 16
Interframe 8 3 3 3
Overhead with acknowledgment 57 varies 47 28
Overhead without acknowledgment 41 43 na. n.a.

Table 4. Message loop size.

Protocol Characteristics Token 518.50 CAN TTP

Message overhead (in bits) 656 688 752 224
Token overhead (in bits) 160 - - -
Message data (in bits) 256 256 256 256
Total loop (in bits) 1,072 944 1,008 480
Data efficiency (in percent) 24 27.1 25.3 53.3

resources. Or we could start with a Class
4 configuration in a prototype imple-
mentation, gather information about
real-life failure rates, and then imple-
ment a more economical Class 3 or Class
1 configuration in the product market
without any change in the application
software.

under the assumption that eight nodes
or FTUs send a 16-message loop with
32 total message bytes (2 bytes per
message).4

Eventually, TTP must be imple-
mented in a hardware communication
controller. Therefore, we made a first-
order estimate of such a controller
chip’s hardware complexity.

In TTP, the two messages per node
are packed into a frame with a 4-byte
data field. The receiver can derive the
message name from the time of sending.
All messages are acknowledged.

Performance comparison. Compar-
ing the performance of communication
protocols that are based on disparate
architectural paradigms and provide
different services is a delicate issue.
Therefore, the tables we present here
must be interpreted carefully. Time-
triggered protocols like TTP require
the same amount of bandwidth inde-
pendent of the actual demand, whereas
event-triggered protocols, such as 51850
or CAN, are demand driven. The token
protocol lies somewhere between these
two extremes.

Response time. Given a 250-Kbps
channel, the TDMA round of TTP in
this example is 1.92 ms in a Class 1 or
Class 2 configuration. This is also the
worst case delay for a mode switch. For
a Class 3 or Class 4 configuration with
four replicated messages, the TDMA
round is doubled to just below 4 ms.

The three most innovative aspects of
TTP are the fault-tolerant clock syn-
chronization, the membership protocol,
and the CRC calculation technique. In
our research on the Mars architecture,
we implemented a VLSI circuit for clock
synchronization (the clock synchroni-
zation unit CSU”), which we have used
experimentally during the past five years.
This chip has about 10,000 transistors,
including all interface circuitry. We are
sure that the clock synchronization in a
TTP chip will be simpler.

The comparison numbers for the to-
ken protocol, J1850, and CAN are from
the SAE Handbook.4 For TTP we as-
sume a Class 2 configuration that will
tolerate node and frame losses.

Message length and loop size. Table 3
shows the message length used by the
different protocols. Table 4 shows the
comparative loop sizes measured in bits

TTP’s global time base makes it pos-
sible to synchronize the time of sam-
pling the data with the arrival of the
TDMA slot at the sampling node. There-
fore, TTP’s guaranteed data delay is
normally much less than the full TDMA
round. In a well-designed static sched-
ule, this data delay can be one or two
FTU slots; for the example considered
above, this is on the order of 0.1 ms.
With a token protocol, the delay be-
tween the sampling point and the trans-
mission point cannot be synchronized
and can thus vary by a full token rota-
tion time.

The membership protocol is concep-
tually unsophisticated. The innovative
technique of CRC calculation and the
counting of the successful and unsuc-
cessful frame receptions can be imple-
mented in hardware without much ef-
fort. TTP’s conflict-free media-access
protocol simplifies the interface at the
signaling level and makes the protocol
scalable to very high transmission speeds.
The other TTP functions are standard
and found in almost any communica-
tion controller. We therefore estimate
that the complexity of a TTP controller
chip with the two redundant I/O chan-
nels is less than 100,000 transistors, ex-
cluding the memory. Because the present
level of VLSI integration is far beyond

22 COMPUTER

Implementation considerations. To
give the implementer freedom to select
the transmission medium best suited
for an application, this protocol does
not specify the medium or signaling
method. In fact, there are no restric-
tions on the signaling method because
TTP is not an arbitration-based proto-
col. An encoding technique such as
modified frequency modulation, which
has fewer than one transition per bit,
can be used to increase the channel
capacity on twisted pairs. TTP also scales
well to high transmission speeds for fi-
ber-optic systems since it requires no
bit-wise arbitration.

We can realize the interface between
a host computer and the TTP controller
with a dual-ported RAM that contains
the control registers for the TTP con-
troller, the descriptor fields of the modes,
and the memory for the incoming and
outgoing data objects. The present glo-
bal time and the recent history of mem-
bership fields are available in special
registers.

1 million transistors, it seems technical-
ly possible to integrate a TTP controller
into a single-chip microcomputer.

0 nly time-triggered architectures
can provide the predictable
performance needed in distrib-

uted real-time control systems. The
Time-Triggered Protocol we presented
here provides all the necessary services.
We have implemented and experimen-
tally checked the protocol on the Mars
architecture, and are now designing and
evaluating a detailed reliability model.
In the near future, we hope to imple-
ment TTP as part of a single-chip VLSI
microcomputer. n

Acknowledgments
We acknowledge many useful comments

on an earlier version of this work by the Mars
(Maintainable Real-Time System) group at
the Technical University of Vienna, particu-
larly Johannes Reisinger and Lorenz Lerch-
er. We also thank Kane Kim, Fred Schnei-
der, Lui Sha, and Paula Verissimo for useful
comments on an earlier version of this arti-
cle. This work was supported in part by OS-
terreichische Nationalbank under project
4128.

References
1. L. Lamport, “Using Time Instead of

Timeout for Fault-Tolerance in Distrib-
uted Systems,” ACM Trans. Program-
ming Languages and Systems, Vol. 6, No.
2, Apr. 1984, pp. 254-280.

2. F.B. Schneider, “Implementing Fault-
Tolerant Services Using the State Ma-
chineApproach:ATutorial,“ACMCom-
puting Surveys, Vol. 22, No. 4, Dec. 1990,
pp. 299-319.

3. H. Kopetz et al., “Tolerating Transient
Faults in Mars,” Proc. 20th Int’l Symp.
Fault-Tolerant Computing, IEEE CS
Press, Los Alamitos, Calif., Order No.
2051,1990, pp. 466-473.

4. SAE Handbook, Vol. 2, Sot. of Automo-
tive Engineers, Warrendale, Pa., 1992,
;~;3240~12,20.256,20.272, 20.287,20.301,

5. F. Cristian, “Reaching Agreement on
Processor-Group Membership in Distrib-
uted Systems,” Distributed Computing,
Springer Int’l, Vol. 6, No. 4, 1991, pp.
175-187.

6. G. Fohler, “Realizing Changes of Oper-
ational Modes with Pre Run-Time Sched-

January 1994

uled Hard Real-Time Systems,” Respon-
sive Computer Systems, Vol. 7 of De-
pendable Computing and Fault-Tolerant
Systems, Springer-Verlag, Berlin, 1993,
pp. 287-300.

“Transmission over the Telephone Net-
work: Series V Recommendations,” Sec-
tion V41, The Orange Book, Vol. VIII.l,
Int’l Telephone Union, Geneva, 1977.

W. Schiitz, The Testability of Distributed
Real-Time Systems, Kluwer Academic,
Boston. 1993.

P. Puschner and C. Koza, “Calculating
the Maximum Execution Time of Real-
Time Programs,” Real- Time Systems, Vol.
1, No. 2, Sept. 1989, pp. 159-176.

H. Kopetz et al., “Real-Time System
Development: The Programming Model
of Mars,” Proc. Int’l Symp. Autonomous
Decentralized Systems, IEEE CS Press,
Los Alamitos, Calif., Order No. 3125,
1993, pp. 290-299.

H. Kopetz and W. Ochsenreiter, “Clock
Synchronization in Distributed Real-
Time Systems,” ZEEE Trans. Comput-
ers, Vol. 36, No. 8, Aug. 1987, pp. 933-
940.

ment at Voest Alpine in Austria and was a
professor of computer process control at the
Technical University of Berlin. His research
interests are in real-time systems, fault-
tolerant systems, and distributed systems,
fields in which he has published more than 70
papers.

Kopetz received his PhD in physics from
the University of Vienna in 1968. From 1990
to 1992, he was the chairman of the IEEE
Technical Committee on Fault-Tolerant
Computing. He was elected an IEEE fellow
in 1993 and is also a member of the ACM.

Giinter Grtinsteidl has been a research engi-
neer in the Control System Architectures
Department at the Alcatel Austria Research
Center since May 1993. He participated in
the Mars project as a teacher and research
assistant at the Institut ftir Technische Infor-
matik at the Technical University of Vienna
from 1987 to 1993. His areas of interest in-
clude the application of fault-tolerance tech-
niques in real-time systems and distributed
algorithms like communication protocols and
membership protocols.

Grtinsteidl received his Dipl. Ing. in com-
puter science in 1986 and his Dr. Tech. in
1993, both from the Technical University of
Vienna. He is a member of the IEEE Com-
puter Society, IEEE, and ACM.

Hermann Kopetz has been a professor of Readers can contact Kopetz at the Institut
real-time systems at Technische’Universitgt ftir Technische Informatik, Technische Uni-
Wien, the Technical University of Vienna, versitlt Wien, Treitlstr. 3/182/l, A-1040 Vi-
since 1982, and is the chief architect of the enna, Austria, e-mail hk@vmars.tuwien.ac.at;
Mars project on distributed fault-tolerant or Griinsteidl at Alcatel Austria Research
real-time systems there. He formerly man- Center, Ruthnergasse 1-7, A-1210 Vienna,
aged the Computer Process Control Depart- Austria, e-mail g.gruensteidl@aaf.alcatel.at.

Name (Please Print)

PLEASE NOTIFY
US 4~WEEKS IN
ADVANCE New Address

I City State/Country Zip

