
Proceedings of the 1st workshop on Constraints
in Software Testing, Verification and Analysis

(CSTVA’06)

a CP’06 workshop
September 25-29, 2006

Cité des Congrès - Nantes, France

Benjamin Blanc, Arnaud Gotlieb, Claude Michel (eds)

25 Sept. 2006

Preface

Recent years have seen an increasing interest in the application of constraint solving
techniques to the field of testing and analysis of software systems. A significant part of
constraint-based techniques have been proposed and investigated in program analysis
(static and dynamic), structural testing, model-based testing, property-oriented test-
ing, etc. These applications also introduced specific issues which was at the root of
dedicated constraint solving techniques. Among these issues, we may cite the require-
ment for heterogeneous type handling, the ability to deal with control structure, or the
need to solve constraints over specific domains like the floating-point numbers. Thus,
we initiated this workshop with the hope that people coming from these communities
could meet together to exchange experiences and fruitful ideas which can enhance their
current and future works.

The need for such a workshop has raised from our discussions within the V3F
project. This project started three years ago with the aim toaddress the specific fea-
tures of floating-point computations in critical software verification and validation. The
underlying technology of the project was based on constraint solving techniques over
floating-point numbers. This first workshop on Constraints in Software Testing, Verifi-
cation and Analysis (CSTVA’06), a workshop of the twelfth International Conference
on Principles and Practice of Constraint Programming, emerged from the will of the
participants of the V3F project to promote the ideas developed during the last three
years on this topic. In addition, the organizers of the CPsecworkshop, Giampaolo
Bella, Stefano Bistarelli, Simon N. Foley and Fred Spiessens contacted us to propose
to transfer some of their papers to CSTVA. CPsec is a workshopdedicated the appli-
cations of constraint satisfaction and programming to computer security. Therefore,
it shares significant interests with the CSTVA workshop. After a careful reviewing
process, the program committee has selected 6 papers. This set of papers address is-
sues of program analysis and constraint programming as wellas computer security and
constraint programming:

• Michel Leconte and Bruno Berstel propose to extend a CP solver with congru-
ence domains to avoid the slow convergence phenomenon due tothe large do-
mains that program analysis has often to handle.

• Erwan Jahier and Pascal Raymond describes algorithms to solve Boolean and
numerical constraints, and to draw values among the set of solutions.

• Qiang Fu, Maurice Bruynooghe, Gerda Janssens, and Francky Catthoor detail a
method based on geometric modeling using polyhedra to verify that automated
and manual transformations of program preserve the functionality of the soft-
ware.

• Fred Spiessens, Luis Quesada and Peter Van Roy propose the use of a constraint
propagator for reachability in directed graphs to help to solve the problem of
confinement.

• Yannick Chevalier and Mounira Kourjieh present a method relying on the reduc-
tion of constraint solving to take into account, at the symbolic level, that an in-

1

truder actively attacking a protocol execution may use somecollision algorithms
in reasonable time during an attack.

• Najah Chridi and Laurent Vigneron investigate a strategy, based on both a ser-
vices driven model for group protocols and constraint solving, for flaws detection
for group protocols properties.

In addition, a paper describing the V3F project was includedin the proceedings. It
covers many aspects of the role of constraint solving in software verification and secu-
rity analysis.

Acknowledgement: We would like to thank Barry O’Sullivan for its support of this
workshop, the program committee and also the external reviewers for the high quality
of their reviews. We also address our gratitude to Lydie Mabilfor the design and main-
tenance of the website dedicated to the workshop.

Benjamin Blanc, Arnaud Gotlieb, Claude Michel
(co-organizers of CSTVA’06)

Program Committee

• Fabrice Bouquet, INRIA Nancy

• Andy King, University of Kent

• Bruno Legeard, Leirios Technologies

• Bruno Marre, CEA Paris

• Christophe Meudec, Institute of Technology Carlow

• Fred Mesnard, University of La Réunion

• Andreas Podelski, Max-Planck-Institut fr Informatik

• Jean-Charles Régin, ILOG S.A.

• Michel Rueher, University of Nice

• Pascal Van Hentenryck, Brown University

Additional reviewers

Frédéric Besson, Martine Ceberio, Yannick Chevalier, Tristan Denmat, Katy Dobson,
Patricia Hill, Bruno Martin, Matthieu Petit, Michael Rusinowitch, Fred Spiessens.

2

List of Papers

The V3F Project
B.Blanc, Fabrice Bouquet, Arnaud Gotlieb, Bertrand Jeannet, Thierry Jeron,
Bruno Legeard, Bruno Marre, Claude Michel, Michel Rueher................... 5-21

Extending a CP Solver with Congruences as Domains for Program Verification
Michel Leconte, Bruno Berstel.. 22-33

Generating random values using Binary Decision Diagrams and Convex Polyhedra
Erwan Jahier, Pascal Raymond..34-45

Requirements for Constraint Solvers in Verification of Data-Intensive Embedded System Software
Qiang Fu, Maurice Bruynooghe, Gerda Janssens, and Francky Catthoor....46-57

Confinement Analysis with Graph Reachabilty Constraints
Fred Spiessens, Luis Quesada, Peter Van Roy...58-72

A Symbolic Intruder Model for Hash-Collision Attacks
Yannick Chevalier, Mounira Kourjieh..73-87

Strategy for flaws detection based on a service-driven modelfor group protocols
Najah Chridi, Laurent Vigneron...88-99

3

The V3F Project

Benjamin Blanc1, Fabrice Bouquet2, Arnaud Gotlieb3, Bertrand Jeannet3,
Thierry Jéron3, Bruno Legeard2, Bruno Marre1, Claude Michel4, and Michel

Rueher4

1 {Benjamin.Blanc, Bruno.Marre}@cea.fr
CEA LIST LSL

91191 Gif-sur-Yvette cedex, France
2 {bouquet, legeard}@lifc.univ-fcomte.fr

Laboratoire d’Informatique
Université de Franche-Comté

16, route de Gray - 25030 Besançon cedex 13, France
3 {Arnaud.Gotlieb, Bertrand.Jeannet, Thierry.Jeron}@irisa.fr

IRISA-INRIA,
Campus de Beaulieu,

35042 Rennes cedex, France
4 {cpjm, rueher}@essi.fr

Université de Nice–Sophia Antipolis, I3S–CNRS,
930 route des Colles, B.P. 145,

06903 Sophia Antipolis Cedex, France

Abstract. This paper describes the main results of the V3F project
(which stands for “Validation and verification of software handling float-
ing-point numbers”)5. The goal of this project was to provide tools to
support the verification and validation process of programs with floating-
point numbers. We did investigate two directions: structural testing of
a program with floating-point numbers and verification of the confor-
mity of a program handling floating-point numbers, with its specification.
Practically, a constraint solver over the floats was developed for the gen-
eration of test sets in structural testing framework. Different techniques
have been developed to evaluate the distance between the semantics of a
program over the real numbers and its semantics over the floating-point
numbers.
Key words : verification and validation of programs, constraint pro-
gramming, floating-point numbers, structural testing, reactive systems.

1 Introduction

Computations with floating-point numbers are a major source of failures of crit-
ical software systems. It is well known that the result of the evaluation of an
arithmetic expression over the floats may be very different from the exact value

5 This project is a joint project research supported by the ACI “sécurité et informa-
tique” (security and computer sciences), an MNRT initiative conducted by CNRS,
INRIA and DGA.

2 Benjamin Blanc et al.

of this expression over the real numbers. Formal specification languages, model-
checking techniques, and testing are currently the main issues to improve the
reliability of critical systems. Over the past years, a significant effort was di-
rected towards the development and the optimization of these techniques, but
few work has been done to tackle applications with floating-point numbers. A
correct handling of a floating-point representation of the real numbers is very
difficult because of the extremely poor mathematical properties of floating-point
numbers; moreover the results of computations with floating-point numbers may
depends on the hardware, even if the processor complies with the IEEE 754 stan-
dard.

The goal of the V3F project was to provide tools to support the verifica-
tion and validation process of programs with floating-point numbers. In other
words, project V3F did investigate techniques to check that a program satis-
fies the calculation hypothesis on the real numbers that have been done during
the modeling step. The underlying technology is based on constraint program-
ming. Constraint solving techniques have been successfully used during the last
years for automatic test data generation, model-checking and static analysis.
However in all these applications, the domains of the constraints were restricted
either to finite subsets of the integers, rational numbers or intervals of real num-
bers. Hence, the investigation of solving techniques for constraint systems over
the floating-point numbers is an essential issue for handling problems over the
floats.

Actually, the problem comes from the fact that the set of real numbers is
not finite and thus cannot be store in a computer. Moreover, a numerical rep-
resentation of a rational number like 1/3 or an irrational numbers like π would
require an infinite number of digits. Thus, due to memory limitations, and to
keep computation efficient, computers mainly rely on the two following finite
subsets of the real numbers :

– fixed-point numbers which use a computer integer m to represent the number
m · 2−N , where the magnitude N > 0 is fixed.

– floating-point numbers which use two integers, the mantissa m and the ex-
ponent e to represent the number m · 2e.

The first representation requires a careful choice of N which takes into ac-
count the targeted computations, the magnitude of the numbers to be repre-
sented, as well as the chosen computation precision. However, arithmetic of
fixed-point numbers has some nice properties: for example, adding two fixed-
point numbers always gives another fixed-point number (as long as the result
stays in the range of the represented set of fixed-point numbers).

The second representation benefits from a wide spread standardization, i.e.,
the well known IEEE 754 standard [ANS85]. This standard has been made avail-
able on almost all modern computers and is usually implemented using hard-
ware. As a consequence, computing using floating-point numbers is fast. How-
ever, floating-point numbers have poor arithmetic properties. The result of the
addition of two floating-point numbers is almost never a floating-point number.
Thus, arithmetic over the floating-point numbers requires a rounding operation

The V3F Project 3

to choose the most appropriate representation of the result of an operation in
the set of floating-point numbers.

Critical software systems that accumulate results of computations on a long
period of time have, up to now, used fixed-point numbers. However, for different
reasons (like the ease of use), industrials developing critical software have shown
an increasing interest for floating-point numbers. As a result :

– the validation process (verification as well as test) needs to be adapted to
floating-point numbers : validation tools must take into account the specific
semantics of floating-point numbers.

– the “unpredictable” behavior of floating-point number computations make
the validation process much more complex.

That’s why the goal of the V3F was to provide tools to support the verifica-
tion and validation process of programs with floating-point numbers. To do so,
we did investigate two directions. First, we did address the problem of structural
testing of program with floating-point numbers. In particular, we did develop a
constraint solver over the floating-point numbers for the generation of test sets.
Second, we did investigate the problem of the verification of the conformity of a
program using floating-point numbers with its specification based on real num-
bers. Different techniques have been developed to evaluate the distance between
the semantics of a program over the real numbers and its semantics over the
floating-point numbers.

Outline of the paper. We will first recall some classical problems which occur
when floating-point numbers are used. Then, we will detail the test set genera-
tion problem when the program contains floating-point numbers operations. The
main features of the constraint solver over the floats we have developed will be
detailed. Next, we study the problem of the verification of the conformity of a
program handling floating-point numbers with its specification. Two techniques
to handle this problem will be detailed.

2 Basic problems with floating-point numbers

Floating-point numbers have very poor arithmetic properties [Gol91]. Indeed,
most of the usual properties of arithmetic over the reals are no more true over
the floating-point numbers. Addition and multiplication over the floating-point
numbers are neither associative nor distributive: ((a + b) + b) 6= a + (b + b) and
a ∗ (b + c) 6= (a ∗ b) + (a ∗ b) for numerous floating-point values of a, b and c.
However, these two operations are commutative, i.e., a∗b = b∗a. The same kind
of limitations are true for the subtraction and the division.

Most of these drawbacks indirectly due to the use of a finite subset of the
real and the requirement for a rounding operation. This limited representation of
the real numbers has also some more direct and annoying effects: the absorption
phenomena and the cancellation phenomena. Absorption occurs when a small
floating-point number is added to a much bigger one. In such a case, the addition
acts as a null operation, i.e., a+b = b. For example, adding 10−9 to 109 gives 109.

4 Benjamin Blanc et al.

Cancellation results from the subtraction of two nearby quantities. In this case,
this operation may produce some significant round off error whose propagation
by other operations could be catastrophic. For example6, the computation of
(10.00000000000004− 10.0)/(10.000000000000004− 10.0) yields7 11.5 while the
result should be 10.0

Floating-point arithmetics is highly context sensitive. Any modification or
choice in the rounding value, the floating-point unit, the mathematical library or
the evaluation order of the expression may produce a different result. Therefore,
a solution of a problem over the floating-point number is always related to a
given environment.

The IEEE 754 standard does not even insure that all processors compliant
to the standard will provide the same result. The standard is ambiguous enough
to let both the Sun Sparc processors and the Pentium Intel be compliant. These
two family of processors may produce very different results: the Sparc processor
implement a correctly rounded operation for each available type of floating-
point numbers (simple, double and long double) while the Intel Pentium only
implement correctly rounded operations for the long double. Moreover, a Sparc
processor uses 128 bits to represent a long double while an Intel processor uses
only 80 bits.

The specific properties of the floating-point numbers do not allow a solver
over the reals to correctly tackle problems over the floating-point numbers. For
example, consider equation 16.1 = 16.1 + x. This equation has 0 as the unique
solution over the reals, and a solver over the reals like Prolog IV correctly answers
that the only possible solution is 0. However, all the floating-point numbers
contained in the interval [−1.77635683940025046e−15, 1.77635683940025046e−
15] are solution to 16.1 = 16.1 + x (on a Sparc processor, with doubles and a
rounding mode set to “near”). Thus, to tackle problem over the floating-point
numbers, a dedicated solver is required.

Next section addresses test set generation issues for programs with floating-
point numbers.

3 Structural testing of programs with floating-point

numbers

Structural testing aims at exercising execution paths of a program to fulfill some
coverage criteria (e.g. statement or branch coverage). It improves the program
reliability by ensuring that, for example, all the statements of a given program
have been executed once. A major challenge in structural testing consists in gen-
erating automatically test data, i.e., finding some input values so that a given
point in a program is actually reached. Constraint based structural testing at-
tempts to tackle this issue using a constraint programming model of the problem.
This problem is then solved by means of an adapted constraint solver to find
test sets. The key points are loop unfolding and constraint solving.

6 This example comes from http://www.cs.princeton.edu/introcs/91float/.
7 With gcc, on an Intel Pentium platform running under Linux.

The V3F Project 5

3.1 Structural testing

Symbolic execution is a classical structural testing technique which evaluates a
selected control flow path with symbolic input data. A constraint solver can be
used to enforce the satisfiability of the extracted path conditions as well as to de-
rive test data. Automatic test case generation can be handled efficiently by trans-
lating a non-trivial imperative program into a CSP over finite domains. However,
when these programs contain arithmetic operations that involve floating-point
numbers, the challenge is to compute test data that are valid even when the
arithmetic operations performed by the program to be tested are unsafe.

Expressions in programming languages are more ruled than constraints. A
directed acyclic graph (DAG) is often used to represent them. An expression
like x1 = x2 + x3 in C states the computation of x1 given x2 and x3. However,
especially with floating-point numbers, it does not allows to directly compute x2

or x3 given the two other values.
Whenever path conditions contain floating-point computations, a naive strat-

egy would consist in using a constraint solver over the rationals or the reals. Un-
fortunately, even in a fully IEEE-754 compliant environment, this leads not only
to approximations but also can compromise correctness: a path can be labelled
as infeasible although there exists floating-point input data that satisfy it, or
labeled as feasible when no floating-point input data can satisfy it.

For example, consider the C program given in Fig.1 and the symbolic execu-
tion of path 1→2→3→4. The associated path conditions can be written as {x >
0.0, x+1.0e12 = 1.0e12}. It is trivial to verify that these constraints do not have
any solution over the reals and a solver like the IC library of the Eclipse Prolog
system or Prolog IV will immediately detect it. However, any IEEE-754 single-
format floating-point numbers of the closed interval [1.401298464324817e− 45,
32767.9990234] is a solution of these path conditions. Hence, a symbolic execu-
tion tool working over the reals or the rationals would declare this path as being
infeasible.

Conversely, consider the path conditions {x < 10000.0, x + 1.0e12 > 1.0e12}
which could easily be extracted by the symbolic execution of path 1→2→3→4 of
program foo2 of Fig.2. All the reals of the open interval (0, 10000) are solutions
of these path conditions. However, there is no single floating-point value capable
to activate the path 1→2→3→4. Indeed, for any single floating-point number
xf in (0, 10000), we have xf + 1.0e12 = 1.0e12. Hence the path 1→2→3→4
is actually infeasible although a symbolic execution tool over the reals or the
rationals would have declared it as feasible.

In the V3F project, we addressed the peculiarities of the symbolic execu-
tion of program with floating-point numbers. Issues in the symbolic execution of
this kind of programs were carefully examined and practical details on how to
build correct and efficient projection functions over floating-point intervals have
been described in [BGM06]. First, an approach called normalization was defined
to preserve the evaluation order and the precedence of expression operators of
floating-point computations as specified by the programming language. The key
idea was to take advantage of the expression’s shape of the abstract syntax tree

6 Benjamin Blanc et al.

float foo1(float x) {
float y = 1.0e12, z ;

1. if (x > 0.0)
2. z = x + y ;
3. if (z == y)
4. . . .

Fig. 1. Program foo1

float foo2(float x) {
float y = 1.0e12, z ;

1. if (x < 10000.0)
2. z = x + y ;
3. if (z > y)
4. . . .

Fig. 2. Program foo2

built by the compiler of the program (without any rearrangement nor any sim-
plification due to optimizations). Next, a constraint-based propagation engine
over floating-point intervals was build by defining efficient floating-point vari-
able projection functions implementation. Our work covered not only arithmetic
operators but also comparison and format-conversion operators for numeric and
some symbolic floating-point values. FPSE, a symbolic execution tool for ANSI
C floating-point computations [BG05], was developed and experimented on sev-
eral C programs extracted from the literature. These experiments demonstrated
that the proposed approach was suitable to deal efficiently with small-sized C
floating-point computations.

Next section detailed the essential features of the FPCS solver.

4 FPCS: a constraint solver over the float

Solving constraint over the floating-point numbers is a two step process: a prop-
agation step and an enumeration step. While the latter might rely on usual
approaches, the first step requires more attention.

Roughly speaking, the propagation step consists in a fixpoint algorithm which
attempts to reduce the size of the domain of the variables taking advantage of the
constraints between the variables. For example, consider the simple expression
z = x+y where x ∈ [1, 3] and y ∈ [2, 3]. According to the constraint, the domain
of z ∈ [3, 6]. Thus, if the initial domain of z is [0, 10], it can be reduced to [3, 6].
This simple process is usually extended to the computation of the domain of x
(resp. y) according to the domains of y (resp. x) and z. However, due to the
poor mathematical properties of the floating-point numbers, the computation of
the so called “inverse projections” requires special attention in this case.

FPCS relies on two key properties:

– Interval computation [Moo66] is conservative of the solutions over the floating-
point numbers. More precisely, interval arithmetic, when computed with
floating-point numbers and with outward rounding, preserves the solution
over the floats provided the computation follows the same operation order
than the one specified by the expression over floats8. Moreover, when the
rounding mode is known, interval computation can be done more precisely
by using the current rounding mode instead of an outward rounding.

8 Such an order depends on the programming language.

The V3F Project 7

– A computation of the inverse projection is possible, provided the FPU con-
forms to the IEEE 754 standard for floating-point numbers. In such a case,
basic arithmetic operation are correctly rounded. Correctly rounded means
that the computation of the result over the floating-point numbers is the
same as if the computation were done over the reals before being rounded.
More formally, let ⊙ ∈ {⊕,⊖,⊗,⊘} be a binary operator over the floating-
point numbers, . ∈ {+,−, ∗, /} be a binary operator over the real numbers,
x and y, two floating-point numbers, and Round a rounding function, then,
if ⊙ is correctly rounded: x⊙ y =def Round(x . y). This property allows us
to devise a mean to compute the inverse projection.

4.1 Local filtering of floating-point numbers

Two approaches have been explored. The first one extends the concept of box-
consistency [BMH94] to floating-point numbers [MRL01]. A basic property that
a filtering algorithm must satisfy is the conservation of all the solutions. So,
to reduce interval x = [x, x] to x = [xm, x] we must check that there exists no
solution for some constraint fj(x, x1, ..., xn) ⋄ 0 when x is set to [x, xm]. This job
can be done by using interval analysis techniques to evaluate fj(x, x1, ..., xn) over
[x, xm] when all computations comply with the IEEE 754 recommendations. box-
consistency algorithms attempt to reduce the size of the domains of the variable
using this property by means of a shaving strategy. Though this approach is
effective, it needs a lot of computations to achieve its task.

The second approach extends the concept of 2b-consistency [Lho93] to floating-
point numbers. 2b-consistency algorithms first decompose complex expressions
into simple basic operations for which projections functions are available. For
example, to reduce the size of x, y, and z, the domains of the variables x, y and
z, according to constraint z = x + y, 2b-consistency uses 3 projection functions:

x← x ∩Πx(y, z)

y← y ∩Πy(x, z)

z← z ∩Πz(x,y)

Over the floating-point numbers, the last projection function is easily computed
by means of interval arithmetic. Usually, the current rounding mode r being
known, we have : Πz(x,y) == [x +r y,x +r y] where +r is the addition of two
floating-point numbers with a rounding mode set to r. Thus, the issue is now
the computation of Πx and Πy. For the sake of simplicity, let r = −∞. Then,
Πx is given by:

Πx(y, z) = [z− −+ y, z−−∞ y]

where z− is the predecessor of z, −−∞ is the subtraction computed with a round-
ing mode set to −∞, and z−−+y is equal to (z−−+∞y)+ if z−−+∞y = z−−y

(i.e., the successor of the result of the subtraction computed with a rounding
mode set to +∞), or to z−−+∞ y otherwise. IEEE 754 compliant units provide
a flag which is raised in the second case, and thus, allow the implementation of

8 Benjamin Blanc et al.

the inverse projection function. Note that to compute Πy projection function,
we just need to change the parameters. Each rounding mode requires a slightly
different formulae and each formulae assumes that the underlying operation is
correctly rounded, i.e., that the floating-point unit is an IEEE 754 compliant
unit. These results are more detailed in [Mic02].

4.2 FPCS implementation

FPCS implements the second strategy as a callable C++ library. The targeted
platform is an Intel Pentium running linux while constraints are analyzed as C
language expressions.

The Intel Pentium floating-point unit has one distinctive feature: all floating-
point computations are done using the unique available format, i.e., with 80 bits
floating-point numbers. Thus, any double or simple format is converted in an
80 bits extended floating-point number before any computations. Computations
are then done using operations over extended floating-point numbers. The result
is then converted into the floating-point type of the targeted variable. However,
all the arithmetic operations stick to the IEEE 754 standard. Therefore, special
attention is required when translating a C expression in a set of basic constraints.

FPCS supports all the basic arithmetic operations, i.e., +, −, ∗ and /. It also
supports the square roots which is a correctly rounded operation. Some other
functions have also been implemented (sin, cos, . . .). However, these functions
are not correctly rounded and their precision is not the one of correctly rounded
functions. Projection functions for theses functions do take this into account.
Unfortunately, it is not possible to guarantee that no solution is lost.

4.3 Illustrative examples

The solver directly handles C expressions. For example, to know whether or not
there is a double x such that its square is equal to 2, we simply write

x*x == 2.0

and the solver answers that there is no solution ! As a matter of fact, there is
no double which fulfill such equation when the rounding mode is set to near,
the default rounding mode. If the rounding mode is set to down, then the solver
displays the two solutions. −1.4142135623730951 and 1.4142135623730951.

Now consider the computation of the cubic root:

int gsl_poly_solve_cubic (double a, double b, double c,

double *x0, double *x1, double *x2) {

double q = (a * a - 3 * b);

double r = (2 * a * a * a - 9 * a * b + 27 * c);

double Q = q / 9;

double R = r / 54;

The V3F Project 9

double Q3 = Q * Q * Q;

double R2 = R * R;

double CR2 = 729 * r * r;

double CQ3 = 2916 * q * q * q;

if (R == 0 && Q == 0) {

... /* Point to reach */

} else if (CR2 == CQ3) {

...

} else if (CR2 < CQ3) {

...

} else {

...

}

}

This code has been extracted from the Gnu Scientific Library. Assume that
our aim is to get some input values for a, b and c such that the very first if of
the program will be reached. This problem is equivalent to solving the following
set of constraints:

q = (a * a - 3.0 * b)

r = (2.0 * a * a * a - 9.0 * a * b + 27.0 * c)

Q = q / 9.0

R = r / 54.0

Q3 = Q * Q * Q

R2 = R * R

CR2 = 729.0 * r * r

CQ3 = 2916.0 * q * q * q

R == 0.0

Q == 0.0

Note that the solver distinguishes the affectation = from the equivalence ==

which handle signed zero in different ways. If the value of a is set to 15.0, then
a simple filtering process reduces the domain of all other variables to a single
double:

a = [1.50000000000000000000e+01, 1.50000000000000000000e+01]d

b = [7.50000000000000000000e+01, 7.50000000000000000000e+01]d

c = [1.25000000000000000000e+02, 1.25000000000000000000e+02]d

q = [0.00000000000000000000e+00, 0.00000000000000000000e+00]d

r = [0.00000000000000000000e+00, 0.00000000000000000000e+00]d

Q = [0.00000000000000000000e+00, 0.00000000000000000000e+00]d

R = [0.00000000000000000000e+00, 0.00000000000000000000e+00]d

Q3 = [0.00000000000000000000e+00, 0.00000000000000000000e+00]d

R2 = [0.00000000000000000000e+00, 0.00000000000000000000e+00]d

CQ3 = [0.00000000000000000000e+00, 0.00000000000000000000e+00]d

CR2 = [0.00000000000000000000e+00, 0.00000000000000000000e+00]d

10 Benjamin Blanc et al.

This last example shows how effective a 2b-filtering over the floating-point
numbers is. FPCS has been tested on a variety of programs.

Next section addresses another key issue of the validation process: the con-
formity of a program using floating-point numbers with its specification based
on real numbers.

5 Conformity of a program using floating-point numbers

with its specification based on real numbers

The aim is here to check whether or not a program is conform (with a given
meaning) to a formal specification. To take floating-point numbers into account,
a tolerance should be introduced in the conformance relation: floating-point val-
ues are allowed to differ to some degree from the real values of the specification.
The main issue is the capability to test such a relaxed conformance relationship.
The values allowed by the specification are defined by means of an automata.
The automata execution provides some real values for the tests. If the confor-
mance relation is relaxed, then, the interaction between the automata and the
program under test might diverge.

Two approaches have been investigated:

– the conformance testing of asynchronous reactive systems. The issue of con-
formance testing [BJK+05] is to check whether an implementation (a pro-
gram) is conform in some precise sense to a formal specification. As in struc-
tural testing, one also considers test purposes, which typically consists in
maintaining the executions of the implementation in some set during the
execution of the test. The aim of such test purposes is to orient the test to-
ward specific functionalities of the implementation, or to simulate particular
environments in which the implementation should run correctly.

– the generation of functional test sequences for Lustre descriptions with nu-
merical values. GATeL is a functional testing tool based on Lustre descrip-
tions: a formal modeling language belonging to the synchronous data-flow
family. Given a control program and a partial description of its behavior as
a Lustre model, the main role of GATeL is to automatically generate test
sequences (representing an evolution of input data flows over time) according
to test objectives. When numerical values have been taken into account into
Lustre descriptions, we decided as a first step to give a real interpretation to
the computations made. However, this pure interval semantics has a too poor
decision power in our context. To avoid this problem, called reification in the
testing community, we chose to force input data flows to be instantiated only
to double (seen as particular reals) during the resolution process.

5.1 Conformance testing of asynchronous reactive systems

Background. STG (Symbolic Test Generator) is a tool for generating test cases
for asynchronous reactive systems [RdBJ00,CJRZ02], based on the principles

The V3F Project 11

End Idle

RecX

RecY

Cmp

?Start

?a(p)
x := p

?a(p)
y := p

!End

!Error(p) :
p=x ∧ x¡0 ?

!Error(p) :
p=y ∧ y¡0 ?

!OK(p) :
p=y-x ∧
-2≤p≤2 ?

!NOK(p) :
p=y-x ∧

(p≤-3 ∨ p≥3) ?

receive Start, read 2 integers x, y on the channel a

check that they are positive and that |x − y| ≤ 2 (otherwise emit resp. ERROR or
NOK)

emit OK(x − y) and start again reading values

Fig. 3. Example of a IOSTS specification S

first developed by [Tre96]. The observable points of the implementation under
test I are supposed to be the input (resp. output) messages it receives from
(resp. emits to) its environment. The implementation is thus a black box whose
observable behavior is traces of input/output messages.

The aim of STG is to test the conformance of an implementation I w.r.t. a
specification S modeled as a input/output symbolic automaton (IOSTS), which
is basically a finite automaton extended with variables, guards and assignments,
and where actions carry values9. Fig. 5.1 gives an example of an IOSTS. Such
a specification defines a set of conformant traces traces(S). The implementation
exhibits a conformance error during its execution if its observable behavior at
some point does not belong any more to traces(S).

In this context, the tester is a program that will be run in parallel with the
implementation I, and whose role is to provide suitable inputs to I and to check
whether the outputs of I are correct w.r.t. the semantics of S.

For the sake of simplicity, we do not describe here how to perform test selec-
tion by the mean of test purposes, and we focus only on checking conformance.

Taking into account the behavior of floating-point numbers. As ex-
plained in the introduction, the semantics of floating-point operations is non-
deterministic and suffers from non-intuitive properties.

9 Alternatively, an IOSTS corresponds to a bounded-memory, non-recursive program
emitting and receiving valued messages from its environment.

12 Benjamin Blanc et al.

As the semantics of floating-point numbers is thus hardly understandable
and/or predictable by an human being, who writes the specification, we make
the following fundamental choice:

We assume that the reference semantics of the specification S is based
on its (deterministic) real number semantics.

This choice has also the benefit to enable easy semantics-preserving program
transformations (which is much more difficult with floating-point numbers).

In this context, we take into account the non-deterministic semantics of
floating-point numbers (that are still used in the implementation) by relaxing
the conformance relation: we allow a limited slew between the observed values
of the implementation I and the values authorized by the reference semantics of
S, without letting them diverge as the execution proceeds. This can be roughly
formalized by defining, for some ǫ > 0:

tracesǫ(S) = {σ0 . . . σn | σ
′

0 . . . σ′

n ∈ traces(S) ∧ ∀i ≤ n : d(σi, σ
′

i) ≤ ǫ}

where d(·, ·) is a suitable distance between messages. tracesǫ(S) defines a relaxed
semantics of S.

The main difficulty now is to check the inclusionship of the observable behav-
ior of I in tracesǫ(S). In the standard case, without floating-point numbers, this
inclusionship is incrementally tested by executing the IOSTS S in parallel with
I. However, accepting a slack between the “ideal” values expected by the IOSTS
S and the actual values emitted by I raises a problem: since this values may be
used in the next execution step of S, an increasing divergence may arise as the
execution proceeds between the values that such a relaxed IOSTS S accepts and
those defined by tracesǫ(S).

The solution we developed uses an orthogonal projection of values that are
conformant “upto ǫ” onto the set of strictly conformant values. Such a projection
may be easily be implemented if we restrict numerical conditions in the IOSTS
S to be defined with logical combinations of linear constraints.

We proved that this technique allows to effectively check the inclusionship in
a subset of tracesǫ(S). Although we do not decide the inclusion in the exact set
tracesǫ(S), this is still satisfactory as we intuitively check that the acceptable
slack between the strict semantics of S and I does not induce a divergence in
the long term.

This approach has some requirements:

– The IOSTS S should be executed with a real-number semantics. This may
be done by using multi-precision rational numbers, but this restricts the
arithmetic operations that may be used in a specification, hence the kind of
properties that can be tested.

– The previous point implies that conversions from and to floating-point num-
bers are required. It is easy, although potentially costly, to convert precisely
a floating-point number to a multi-precision rational number. However, the
opposite conversion may imply an approximation. This is valid as long as
the distance is less than ǫ.

The V3F Project 13

A weakness of this approach is that it uses a absolute tolerance ǫ, instead of a
relative tolerance taking into account the magnitude of the floating-point values.
We conjecture that the same approach could be developed using a norm instead
of a distance and a relative tolerance for relaxation, but we have not yet worked
out this direction.

We still have to implement this method in STG and to experiment its rele-
vance. The implementation consists mainly in adding the conversion operations
and the orthogonal projection onto an union of convex polyhedra (induced by
the logical combination of linear constraints allowed in guards). The orthogo-
nal projection onto a single convex polyhedron can easily be performed using a
linear programming solver, and then generalized to union of convex polyhedra.
The orthogonal projection also allows to compute the distance between a vertex
and such polyhedral sets, which is needed for checking the relaxed conformance.

5.2 The generation of functional test sequences for Lustre

descriptions with numerical values

GATeL[MA00] is a functional testing tool based on Lustre descriptions: a for-
mal modeling language belonging to the synchronous data-flow family. Given a
control program and a partial description of its behavior as a Lustre model, the
main role of GATeL is to automatically generate test sequences (representing
an evolution of input data flows over time) according to test objectives. These
test objectives are characterized by a property to be reached in order to exercise
meaningful situations. It can be the raise of an alarm, or the execution of a
predetermined scenario, or a general property on inputs and outputs. To build
a sequence reaching the test objective, according to the Lustre model of the
program and its environment - also described in Lustre, these three elements are
automatically translated into a constraint system. A resolution procedure then
solves this system.

The obtained test sequences can then be submitted to the program under
test. When only dealing with boolean and integer data-flows, there are two level
of conformity. The first one is to ensure that the test objective pointed by the
test sequence is actually reached at the same cycle by the program. The second
also checks that the outputs guessed by the Lustre model and those computed
by the program are equal at every cycle.

When numerical values have been taken into account into Lustre descrip-
tions, we decided as a first step to give a real interpretation to the compu-
tations made. Indeed, the Lustre descriptions manipulated by GATeL users are
mainly considered as a model of the control program with no direct link between
them. Designers are supposed to be more familiar with real interpretations than
floating-point ones. This also allows to generate sequences as independently as
possible of the underlying hardware.10

10 A second step would be to give a floating-point semantics to the computations using
FPCS to deal with cases where the Lustre model is also considered as an executable

14 Benjamin Blanc et al.

We did it the usual way, by widening the computations into the largest inter-
val of double precision floating-point values. Intervals are created when parsing
the Lustre description, while reading a numerical string not exactly representable
by a double. This happens very frequently, for it concerns very usual constants,
e.g. 0.1 or 0.02. This semantics allows to ensure that no real solution is lost in the
resolution process. However, this pure interval semantics has a too poor decision
power in our context.

Consider the following example, where the reach directive states to reach a
sequence where r is true at the final cycle.

node Const(x:real)

returns(r:bool);

let

r = (x + 0.06 = 0.08);

(*! reach r !*)

tel;

According to this semantics, constants 0.06 and 0.08 are interpreted as inter-
vals since they are not exactly representable by doubles: [0.0599999999999999978,
0.0600000000000000047] and [0.0799999999999999878, 0.0800000000000000017]
respectively. After building the initial constraints system and propagating the
equation for r, the domain allowed for x is [0.019999999999999983, 0.0200000-
00000000004]. This domain is the smallest satisfying the three projections of
this equation (direct addition and two indirect subtractions). Since the reso-
lution procedure cannot choose any value within the interval representing the
constants, none of these values could be further discriminated by the resolution
procedure. To submit this sequence to the program under test, a sequence build
on this result should then pick any double in the domain for x. However, some
values for x (e.g. 0.019999999999999983) leads to a contradictory value for r,
when evaluated by a compiled program with a “to-the-nearest” rounding mode
(and this would be also the case for any other rounding mode). This difference is
interpreted by the conformance relation as a bug, while it only is a consequence
of extra widening.

To avoid this problem, called reification in the testing community, we chose to
force input data flows to be instantiated only to double (seen as particular reals)
during the resolution process. Similarly, constant values are interpreted as the
nearest double. In our example, constants are interpreted as 0.06 (slightly above
its real value) and 0.08 (resp. slightly under its real value). Consequently, the
new domain for x is the successor of 0.02 : 0.020000000000000004. A floating-
point evaluation of the computation in a round-to-nearest mode confirms the
correct result. Any other value given to x would lead to a wrong result.

program. As usual, exact informations about the compilation of Lustre programs
should then be needed.

The V3F Project 15

Another feature of our solver improves the decision power in order to be
able to deal with exact equalities/inequalities test objectives. It allows to distin-
guish between reducible and unreducible intervals, according to a special status.
Unreducible interval are interval created during an operation between constants.
These intervals are treated as open intervals. However, in order to avoid mixing
closed and open intervals during the resolution process, any operation involving
open intervals lead to a closed reducible one. A modification of our previous
example shows the benefits of this feature:

node Const(x:real)

returns(r:bool);

let

r = (x + 0.01 = 0.06);

(*! reach r !*)

tel;

The initial propagation of the corresponding constraints system imposes x to
belong to an interval coming from the three projections altogether. The difference
with the previous example lies in the fact that there exists no double value at
the intersection of the three domains of the projections. Since input should be
completely instantiated, there is then no test sequence leading to this objective
according to our semantics.

Using this feature also leads us to increase the decision power when coping
with equation/inequality. For instance, if x is a double and y an unreducible
interval, then when always have that x 6= y, and max(x) ≤ min(y) ∧ x < y.
Moreover if only y status is known and if x = y ∧max(x) = min(y), then the
resolution fails.

Of course, this semantics does not contain all real solutions of a problem, but
only those which are representable by double values. However, it is conservative
for representable ones. Extra floating-point solutions could be introduced by
using intervals, but some algebraic treatments and the unreducible intervals
strongly limit their apparition.

6 Conclusion and further work

Computation with floating-point numbers is a critical issue for many software
systems. Very few tools are available to check that a program satisfies calculation
hypothesis that have been done during the specification process. In the V3F
project did investigate the capabilities of constraints techniques to handle these
tasks.

We did develop a constraint solver over the floating-point numbers for struc-
tural testing of a program with floating-point numbers. We addressed the pecu-
liarities of the symbolic execution of program with floating-point numbers. Issues
in the symbolic execution of this kind of programs were carefully examined and

16 Benjamin Blanc et al.

practical details on how to build correct and efficient projection functions over
floating-point intervals have been described.

We did also develop different techniques to evaluate the distance between
the semantics of a program over the real numbers and its semantics over the
floating-point numbers. The key idea here is the introduction of a tolerance. A
symbolic test generator for asynchronous reactive systems with the floating-point
numbers has been developed. GATEL, a functional testing tool for synchronous
systems, has also been adapted to handle Lustre specifications with numerical
values.

First experimentations on academic programs are quite promising. Further
work concerns the evaluation of all these techniques on more significant programs
as well as their integration in software verification frameworks based on model
checking or theorem proving.

References

[ANS85] ANSI/IEEE, New York. IEEE Standard for Binary Floating Point Arith-
metic, Std 754-1985 edition, 1985.

[BG05] B. Botella and A. Gotlieb. FPSE: Floating-Point Symbolic Execution. INRIA-
IRISA, Rennes, 2005. Documentation of a floating-point interval constraint
solver.

[BGM06] B. Botella, A. Gotlieb, and C. Michel. Symbolic execution of floating-point
computations. The Software Testing, Verification and Reliability journal,
16(2):pp 97–121, June 2006.

[BJK+05] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and
Alexander Pretschner. Model-Based Testing of Reactive Systems: Advanced
Lectures. LNCS. Springer-Verlag New York, Inc., 2005.

[BMH94] Frédéric Benhamou, David McAllester, and Pascal Van Hentenryck.
Clp(intervals) revisited. In Proc. of the ISLP’94, pages 124–138, 1994.

[CJRZ02] D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva. STG: a symbolic test
generation tool. In Tools and Algorithms for Construction and Analysis of
Systems (TACAS’02), volume 2280 of LNCS, 2002.

[Gol91] David Goldberg. What every computer scientist should know about floating-
point arithmetic. ACM Computing Surveys, 23(1):5–48, March 1991.

[Lho93] Olivier Lhomme. Consistency techniques for numeric CSPs. In Proceedings of
IJCAI’93, pages 232–238, Chambéry(France), 1993.

[MA00] Bruno Marre and Agnès Arnould. Test sequences generation from lustre de-
scriptions: Gatel. In In Fifteenth IEEE Int. Conf. on Automated Software
Engineering (ASE 2000), 2000.

[Mic02] C. Michel. Exact projection functions for floating point number constraints.
In Proc. of 7th AIMA Symposium, Fort Lauderdale (US), 2002.

[Moo66] R. Moore. Interval Analysis. Prentice Hall, 1966.
[MRL01] Claude Michel, Michel Rueher, and Yahia Lebbah. Solving constraints over

floating-point numbers. In Constraint Prog. (CP’01), pages 524–538, LNCS
2239, Nov 2001.

[RdBJ00] V. Rusu, L. du Bousquet, and T. Jéron. An approach to symbolic test
generation. In Integrated Formal Methods (IFM’00), volume 1945 of LNCS,
2000.

The V3F Project 17

[Tre96] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence.
Software—Concepts and Tools, 17(3), 1996.

Extending a CP Solver with Congruences as

Domains for Program Verification

Michel Leconte1 and Bruno Berstel1,2

1 ILOG
9, rue de Verdun – 93250 Gentilly – France

2 Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85 – 66123 Saarbrücken – Germany

{leconte,berstel}@ilog.fr

Abstract. Constraints generated for Program Verification tasks very
often involve integer variables ranging on all the machine-representable
integer values. Thus, if the propagation takes a time that is linear in
the size of the domains, it will not reach a fix point in practical time.
Indeed, the propagation time needed to reduce the interval domains for
as simple equations as x = 2y + 1 and x = 2z is proportional to the size
of the initial domains of the variables. To avoid this slow convergence

phenomenon, we propose to enrich a Constraint Programming Solver
(CP Solver) with congruence domains. This idea has been introduced
by [1] in the abstract interpretation community and we show how a CP
Solver can benefit from it, for example in discovering immediately that
12x + |y| = 3 and 4z + 7y = 0 have no integer solution.

1 Introduction

Programs made of production (or condition-action) rules [2–5], which are at the
basis of Business Rules Management Systems (BRMS) [6, 7], are gaining more
and more interest in the industry, as a way to externalize the rapidly changing
behaviors of applications, due to frequent regulation updates or to competitive
pressure. However, in order to deliver the expected agility and robustness, the
business users expects from the BRMS that they assist them in mastering their
rapidly growing rule bases. This concern includes the verification of properties
on the rule programs, as well as code navigation tools that are aware of the rule
program semantics.

Program verification problems, that is, the question of whether a program
satisfies a given property, can often be formulated as satisfiability and non-
satisfiability problems. Using a CP Solver to solve such problems has the ad-
vantage of being able to address a large class of formulas. This comes at the
price of completeness, but practical experience shows that it is most of the time
effective [8]. The solutions that are found correspond to answers (witnesses or
counterexamples) to the program verification questions.

However, the constraint problems that derive from program verification ques-
tions carry specificities that challenge the efficiency of a “plain” CP Solver. In

particular, and in constrast with combinatorial optimization problems, the do-
mains of the input variables are very large, being typically only bounded by the
machine representation of numbers. Also, because program verification often
works by refutation, verification problems tend to produce unsatisfiable con-
straint problems. Since the time taken by CP Solvers to conclude to unsatisfia-
bility may be proportional to the size of the domains of the variables, they result
in being inefficient in some cases, and especially on bug-free programs, for which
the constraint problems are unsatisfiable. This is illustrated by Example 1 in
Section 2.

In this paper we propose to incorporate congruences as domains into CP
Solvers, in order to prove the unsatisfiability of equations on integer variables
more efficiently, that is, in a time independent from the size of the domains
of the variables. Congruences are about the division of an integer by another,
and the remainder in this division. Congruence analysis comes from the static
analysis community. It has been introduced by Granger in [1]. As shown in that
paper [1], congruence analysis is not restricted to linear equations, but can handle
also general multiplication expressions. We extend its scope to other non-linear
expressions such as absolute value, or minimum.

In Section 2 we describe the slow convergence issue, and how it relates to
Program Verification. Then in Section 3 we study the existing related work.
The technique of congruences as domains, as well as the scope we address, are
introduced in Section 4. Section 5 provides the formulas for propagation, and
Section 6 studies the cooperation between congruence and interval domains.
Finally Section 7 illustrates the slow convergence phenomenon with experimental
data, Section 8 presents the usage that was made of this technique in ILOG’s
commercial products, and Section 9 concludes.

2 Slow Convergence in Program Verification

In this paper we will use the following notations (all variables below are elements
of ZZ, the set of the integers).

– We will note aZZ + b the set {az + b | z ∈ ZZ}.
– For x ∈ aZZ + b, we will also note x ≡ b [a].
– We will use a ∧ b for the greatest common divisor of a and b.
– We will use a ∨ b for the least common multiplier of a and b.

As mentioned in the introduction, a particularity of constraint problems
related to program verification, is that the input variables behave as if not
bounded. For example, integer input variables are often supposed to take any
value from machine integers according to their type. This is completely differ-
ent from what happens when using a constraint solver for solving combinatorial
problems, where we always try to reduce the initial domain of variables as much
as it can be with respect to the problem.

Consider a simple constraint such as, say, 2x + 2y = 1 where x and y are
integer variables with value ranging from −d to d, for some integer d. Obviously,

there is no solution to this constraint, and the “usual” interval reduction will
find it, by reducing the domains of x and y down to empty sets. But to achieve
this, the interval reduction will have to step through all the domains [−d, d],
then [−d + 1, d − 1], etc. up to empty ones.

We stress that this slow convergence phenomenon occurs during the prop-
agation of constraints: the time taken to reach a fix point is asymptotically
proportional to the width of the domains. Propagation occurs both initially and
during labelling; as a result, slow convergence may happen when searching for
a solution. For example, the equation 2x + 2y + z = 1 leads to the (slow) prop-
agation of the previous constraint 2x + 2y = 1 if z has been assigned 0 during
the search. It is to avoid both cases that we have implemented congruences as
domains.

The slow convergence issue over real numbers has motivated the development
of special interval narrowing techniques in [9]. Unfortunately, they do not apply
to the integer issue.

From the point of view of program verification, such problems can occur
in various situations. Consider for instance a program containing the following
loop: while (x is even) increment x. This program always terminates. As
mentioned in [10], a way to prove it is to prove that the conjunction of the
loop test expressed on the program states before and after one loop step, is
unsatisfiable. Here the program state is the value of x; after one loop step it
equals x + 1. To conclude to the termination of the program, a prover may thus
want to show that the constraint even(x)∧even(x+1) is unsatisfiable. This boils
down to the constraint problem exposed above, with the same slow convergence
problem.

As other examples of program verification problems that lead to proving
that a conjunction of integer equalities is unsatisfiable, consider the problem of
overlapping conditions in a guarded integer program. The original motivation for
the work presented in this paper comes from the verification of rule programs,
but the overlapping conditions problem may arise in any context that involves
guarded commands.

Example 1. Consider the following program, which implements in some fictious
guarded command language a simple version of the function that returns the
number of days in a Gregorian calendar year.

function nbOfDays (y : int) : int is

y === 0 mod 4 -> 366 |

y === 1 mod 4 -> 365 |

y === 2 mod 4 -> 365 |

y === 3 mod 4 -> 365

end

The question is whether the guards in this program overlap or not.

The answer is ‘no’, that is, the program is bug-free (with respect to the
question). To prove it, we shall first translate the guards into constraints, which

gives the four constraints y = 4xi + i, for i = 0, 1, 2, 3. In these constraints y
and xi are integer variables lying in [−d − 1, d] for some integer d (potentially
231 − 1). Then we shall prove that for any two distinct i and j between 0 and 3,
the conjunction y = 4xi + i ∧ y = 4xj + j is unsatisfiable. As seen previously in
this section, interval reduction can achieve this, but will need d steps. The rest
of this paper shows that using congruences as domains allows a CP Solver to
prove the unsatisfiability in a fixed number of steps.

3 Related Work

Congruence analysis has been introduced by Granger [1, 11] with applications to
automatic vectorization. Today congruence analysis is an important technique,
especially to verify pointer alignment properties [12, 13]. In this paper we ex-
tend its scope beyond linear equations and multiplication, to other non-linear
expressions such as absolute value, or the minimum operator.

Congruence domains have also been extended to constraints of the form
x − y ≡ b [c] [14, 15]. Toman et al. proposed in [16] a O(n4) normalization pro-
cedure for conjunctions of such constraints, Miné improved it to O(n3) in [14].
Grids [17, 18] are another extension which addresses relational congruence do-
mains, in the presence of equalities of the form

∑

aixi ≡ b [c], while we address
the more specific non-relational domains for x ≡ b [c]. In [19], Granger proposes
an extension of the congruence analysis by considering sets of rationals of the
form aZZ + b, where a, b ∈ Q.

In this paper, we extend a solver based on the finite domain CP Solver ILOG

JSolver [20] with congruence as domains for variables. Very few CP Solvers
reason with congruence. The Alice system [21] and its successor Rabbit [22]
implement some congruence reasoning capabilities as part of formal constraint
handling. Let us look at an example, which was taken from [22].

Example 2. Find all integer positive solutions of x3 + 119 = 66x.

From x3 < 66x, Rabbit finds that x2 < 66, and then x < 8. Rabbit then
performs two factorizations, namely 119 = 7 × 17 and 66 = (3 × 17) + 15.
It then uses a congruence reasoning to deduce from these factorizations that
x3 ≡ 15x [17], which can also be written x(x2 − 15) ≡ 0 [17]. Rabbit then
applies the deduction rule

if a × b ≡ 0 [k] and k is prime, then a ≡ 0 [k] or b ≡ 0 [k]

to deduce that x ≡ 0 [17] or x2 ≡ 15 [17]. Since x is positive and x < 8, the
constraint x ≡ 0 [17] is always false. Finally x2 ≡ 15 [17] leads to x = 7 as this is
the only admissible value for x among [1, 7].

As we can see from Example 2, the congruence capabilities of Rabbit are
pretty important, and they are based on redundant modular equations genera-
tion. In this example, it involves the factorization of 119 as 7 × 17.

To solve this example, congruence domains of the form aZZ +b as we propose
are not enough. However, here pure interval reduction is enough to find the
solution. When the example is given to ILOG JSolver, the domain of x starts
at [1, 231 − 1], and is reduced to [2, 1290], then to [3, 43], to [5, 13], to [6, 9], to
end with x = 7.

As we will see, interval and congruence domains interact smoothly [1, 12, 13].
This is an example of the so-called reduced product operation of the theory of
abstract interpretation [1, 23, 24]. Numeric domains such as intervals and con-
gruences are available in Static Analysis Systems such as Astrée [25] or the
Parma Polyhedra Library [26, 27].

Finally, another approach to avoiding the slow convergence problem on con-
straints such as x = 2y + 1 and x = 2z, is to use an integer linear solver inside
the CP Solver. Note that this would handle only linear equations.

4 Congruences as Domains

4.1 Scope

The scope of constraints that we consider here extends to any equality constraint
over integer variables and expressions. The integer expressions are built using
the usual +, −, ×, ÷ arithmetic operators, as well as the power, absolute value,
minimum, and maximum ones.

We also consider element expressions in the form t[i], where t is an array
and i is an integer variable. The element expression denotes the i-th element of
the array. In simple element expression, this element is an integer; in generalized
ones, the element is an integer variable. An element constraint is a constraint of
the form z ∈ {t[i]}, which amounts to the disjunction

∨

i z = t[i].
Finally, we also consider if-then-else expressions in the form if(c, e1, e2),

where c is a constraint, and the ei are integer expressions. The if-then-else expres-
sion denotes the e1 expression if the constraint c is true, and the e2 expression
if the constraint c is false.

Although the whole range of integer constraints is covered, congruence anal-
ysis is of course not a decision procedure. That is, congruence analysis alone will
not always detect the unsatisfiability of a set of integer constraints. And this does
not harm, since it is simply meant to strengthen the constraint propagation.

4.2 Using Congruences on Interval Domains

Example 3. Find all integer solutions of 2x + 4y + 6z = 1.

On the example above, the interval-based constraint propagation will perform
no bound reduction at all. In particular, the unsatisfiability of the constraint will
not be detected by constraint propagation.

A congruence reasoning shows that the expression 2x + 4y + 6z is even, and
thus cannot be made equal to 1. At least, this illustrates a missing propagation.

Remember that a constraint
∑

i aixi = c has no solution if the greatest
common divisor

∧

i ai does not divide the constant c. We can use this property
in the propagators of integer linear constraints: we compute the greatest common
divisor of the coefficients of uninstantiated variables, and check if it divides the
constant minus the sum of the aixi for instantiated variables.

This passive use of a congruence constraint, where congruences are used to
update the bounds of interval domains, may already be useful. In addition it has
little overhead on propagation time since this check has to be done up-front, and
then only when a variable becomes instantiated.

4.3 Storing Congruence Information Separately

Example 4. Find all integer solutions of the problem made of the constraints
2x + 4y + 3z = 1 and z = 2t + 12.

The passive use of congruence information just described will not detect that
z cannot be even in 2x + 4y + 3z = 1. Thus the unsatisfiability of the two
constraints will be not detected. However, it would be a bad idea to use such a
congruence constraint in an active way without caution.

Imagine for example that the congruence constraint not only checks for the
constants dividing the greatest common divisor, but also adjusts the bounds of
the domains of variables accordingly. Let us say that propagating 2x+4y+3z = 1
would lead to adjust the bounds of z in such a way that these bounds are not
even. Coming back to Example 4, an empty domain will be found for z, as the
constraints will eventually lead to a domain with both odd and even bounds.
Unfortunately, this would exhibit a slow convergence behavior since the bounds
would change by one unit at a time.

The way to solve this last problem is to share the congruence information
between constraints, that is to say to equip variables with congruence informa-
tion, as opposed to hide it in the actual values of their bounds. Consequently,
in the very same way we associate a point wise finite domain to each integer
variable, we associate to each of them a congruence domain in the form of a pair
(a, b) that represents the set aZZ + b. Then for each expression, the congruence
domain of the expression can be computed from the congruence domains of the
sub-expressions, using the formulas detailled in next section. Similarly the com-
puted congruence domains are propagated by equalities constraints to reduce
the congruence domains of the variables.

This way, the unsatisfiability of the two constraints x = 2y and x = 2z +1 is
found by a congruence reasoning deducing that x should be both even and odd.
This reasoning requires a number of steps which is independent from the size of
the domains of the variables involved.

This active use of congruence information, where domains are reduced, sub-
sumes the passive use described previously, which only performs divisibility
checks.

5 Propagation of Congruences as Domains

5.1 Propagation Through Operations

Each integer variable has a congruence domain, noted aZZ + b, which represents
all possible values for this variable. We use 0ZZ + b to represent the constant b,
and 1ZZ + 0 as the domain of a variable with all integers as possible values.

Now we have to define how to compute the congruence domain for expres-
sions. We only give here the formulas for the addition and multiplication oper-
ations. These formulas, and those for substraction and division, can be found
in [1]. Given x ∈ aZZ + b and y ∈ a′ZZ + b′:

x + y ∈ (a ∧ a′)ZZ + (b + b′) (1)

x × y ∈ (aa′ ∧ a′b ∧ ab′)ZZ + bb′ (2)

One can note that the square expression has a more precise characterization
than the one derived from the general multiplication case. Given x ∈ aZZ + b:

x2 ∈ (a2 ∧ 2ab)ZZ + b2 (3)

Let us look now at the union expressions, which result from constraints of
the form z ∈ {x, y}. Given x ∈ aZZ + b and y ∈ a′ZZ + b′:

if z ∈ {x, y} then z ∈ (a ∧ a′ ∧ |b − b′|)ZZ + b (4)

The dissymmetry between b and b′ in this formula is only apparent. Indeed, let
α denote the greatest common divisor of a, a′, and |b − b′| appearing in (4): in
particular it divides |b − b′|. That is, ∃k ∈ ZZ, b − b′ = αk. In other words, we
have b ≡ b′ [α].

This formula for the union gives the formula for if-then-else expressions. Re-
member that if(c, e1, e2) is an expression taking the value e1 when c is true and
e2 when c is false. If the constraint c is known to be true (resp. false), then the
congruence domain for if-then-else is the congruence domain of e1 (resp. e2).
However if the truth value of the constraint is unknown, then the expression has
a congruence domain which is the union of the congruence domains of the two ex-
pressions. (This makes union an over-approximation of if-then-else expressions.)
Given x ∈ aZZ + b, y ∈ a′ZZ + b′, and a constraint c:

if(c, x, y) ∈

aZZ + b if c is known to be true
a′ZZ + b′ if c is known to be false
(a ∧ a′ ∧ |b − b′|)ZZ + b otherwise

(5)

This also leads to the formula for a min expression, as min(x, y) is equivalent
to if(x < y, x, y). Formulas for max and absolute value may be easily found if
we remark that max(x, y) = if(x < y, y, x) and |x| = if(x < 0,−x, x).

Finally, for an array t of integer variables and an integer variable i, the
expression z = t[i] is equivalent to z ∈ {t[j]} for all values j which are non-
negative, and less than the length of the array t.

5.2 Propagation Through Equality

We now indicate how to deal with equality constraints. As usual when propagat-
ing through equality, we just have to compute the intersection of the domains.
Given x ∈ aZZ + b and y ∈ a′ZZ + b′:

if x = y then x ∈

{

(a ∨ a′)ZZ + b′′ if (a ∧ a′) divides (b − b′)
∅ otherwise

(6)

The number b′′ can be computed as follows. Let x = au+ b and y = a′v + b′, the
equality x = y gives au+b = a′v+b′, that is, au−a′v = b′−b. Since a∧a′ divides
b − b′, this can be simplified by a ∧ a′ into αu − α′v = β. Since α and α′ are
relatively prime, Bezout’s theorem ensures that there exist u0 and v0 such that
αu0 + α′v0 = 1. These numbers can be computed using a generalized Euclid’s
algorithm [28]. Combining the last two equations gives α(u−βu0) = α′(v+βv0).
Since α and α′ are relatively prime, u−βu0 is a multiple of α′. From x = au+ b,
we have x ∈ α′aZZ + b′′, where b′′ = b + βu0.

If the equality constraint involves expressions instead of variables, then the
congruence domains of the expressions are used to compute the intersection.
This resulting domain is then downward propagated to the sub-expressions of
the expressions until it falls back to the variables.

Example 5. Find all integer solutions to 4x = 3|y| + 2.

Let us use Example 5 to illustrate how the propagation of congruence domains
proceeds. In the absence of further information, we have x, y ∈ 1ZZ + 0. The
formulas for addition (1), multiplication (2), and absolute value (5) give that
4x ∈ 4ZZ + 0 and 3|y| + 2 ∈ 3ZZ + 2.

The formula (6) for the equality constraint gives that both expressions belong
to 12ZZ+8. Since 4x ∈ 12ZZ+8, x ∈ 3ZZ+2. Since 3|y|+2 ∈ 12ZZ+8, |y| ∈ 4ZZ+2.
The absolute value can be decomposed into the case where y ∈ 4ZZ + 2, and the
case where −y ∈ 4ZZ + 2. This latter case gives y ∈ 4ZZ − 2, which is the same
as 4ZZ + 2. Eventually y ∈ 4ZZ + 2. The domains cannot be further reduced: a
fix point is reached.

6 Cooperation of Congruences and Intervals

The idea here is to merge the two notions and to consider domains of the form
aZZ +b∩ [min,max]. In the Abstract Interpretation framework, this corresponds
to the reduced cardinal product of congruence domains and interval domains.
It is called Reduced Interval Congruence (RIC) in [12, 13]. By combining the
two domains, information coming from interval domains will be used by the
congruence domain and vice-versa.

Let us first examine how to communicate information from interval domains
to congruence domains.

– When a variable is bound, as for instance in x = b, this can be formulated
in congruences as x ∈ 0ZZ + b.

– When it is found that x ∈ {bi} for some constants bi, this implies that
x ∈ (

∧

i>0
|bi − b0|)ZZ + b0.

– For an element constraint z ∈ {t[i]}, the range of the variable i restricts the
elements of t that are to be taken into account to compute the congruence
domain of z.

To communicate information from congruence domains to interval domains,
one will use the fact that the bounds of a variable must lie in the same congruence
domain as the variable itself. That is, if x ∈ [min,max] and x ∈ aZZ + b, then
min and max must be adjusted in order to belong to aZZ + b. When a 6= 0, the
adjusted min is a⌈(min − b)/a⌉+ b and the adjusted max is a⌊(max − b)/a⌋+ b.

If the diameter max −min is less than a, the variable will have a singleton or
empty domain. For instance if the interval domain had been reduced to [0, a−1],
then the variable can be instantiated to b, which is the only element of aZZ + b∩
[0, a − 1]. Similarly, if the interval domain had been reduced to [0, |b| − 1], then
the solver fails, as aZZ + b ∩ [0, |b| − 1] = ∅ for any a.

Also, for an element constraint z ∈ {t[i]}, the congruence domain of z is to
be taken into account to remove from the index variable domain the values i0
for which z = t[i0] cannot be satisfied.

Let us close this section with a example showing non-trivial reductions.

Example 6. Consider the two constraints 4x = 3y + 2 and |x| − 12z = 2.

We have already seen that the first constraint leads to x ∈ 3ZZ + 2 and
y ∈ 4ZZ+2. Now, looking at the second constraint, we deduce that |x| ∈ 12ZZ+2.
Since |x| = if(x < 0,−x, x), we deduce that x ∈ 12ZZ + 10 (if x < 0) or
x ∈ 12ZZ + 2 (if x ≥ 0). Because 12ZZ + 10 ∩ 3ZZ + 2 = ∅, we are left with
x ∈ 12ZZ + 2 and x ≥ 0.

7 Experimental Illustration

In this section we describe two examples that suffer from the slow convergence
problem, and we provide experimental data that exhibits the phenomenon.

Example 7. Solve 2x + 3y + 6z = 2, with x, y, z ∈ [−10d, 10d].

In Table 1, the times mentioned are the time taken to generate the first
solution. The variable x is instantiated first to −10d, then to −10d + 1 and
finally to −10d + 2 which leads to a solution. The numbers show that without
congruence domains this time is proportional to the size of the domains, while it
is not when using congruence domains. The result is then found in a time lower
than what can be measured; this is interesting per se, but the table shows that
this time does not depend on the size of the domains.

Example 8. Prove that 2x + 2y = 1, with x, y ∈ [−10d, 10d], has no solution.

In Table 2, the times mentioned are the time taken during the propagation,
which concludes to the unsatisfiability of the constraint. Here also, the numbers
show that without congruence domains this time is proportional to the size of
the domains, while it is not when using congruence domains.

Value of d Time without C.D. Time with C.D.

4 0.04 s 0 s

5 0.19 s 0 s

6 1.88 s 0 s

7 18.85 s 0 s

8 241.82 s 0 s

9 946.57 s 0 s
Table 1. Times taken for solving Example 7.

Value of d Time without C.D. Time with C.D.

4 0.12 s 0 s

5 0.06 s 0 s

6 0.62 s 0 s

7 6.16 s 0 s

8 61.96 s 0 s

9 871.05 s 0 s
Table 2. Times taken in propagation for Example 8.

8 Industrial Usage

From a marketing perspective, Program Verification is an important feature
for BRMS [29]. As mentioned in the introduction, it aims at helping the non-
technical users to master the rule programs their author using the system.
This takes both the form of verification of properties on the program, and of
semantics-aware code navigation tools. For commercial products such as ILOG

JRules, this is a key differentiator.
As an illustration, one of the verification tasks we perform is to detect when

a rule is never applicable, that is, when the tests in its condition part are always
unsatisfiable. When the user creates a rule within the Eclipse IDE [30], a rule
that is never applicable will be immediately signaled, with the tests causing the
unsatisfiability highlighted.

We have embedded in ILOG JRules a new verification solver, as a Java
library built on a Constraint-based Programming Solver derived from ILOG
JSolver [20]. This CP Solver is part of ILOG JRules since release 4.5 which
was delivered in 2003, and has kept evolving since. The passive use of congruence
as presented in section 4 is present in ILOG JRules since release 6.0. We are
now implementing congruence as domains for the next release of ILOG JRules.

9 Conclusion

Integer constraint propagation exhibits a slow convergence phenomenon when
the time to reach a fix point or to fail is proportional to the size of the domains
of the variables.

To avoid this phenomenon for some integer equality constraints, we added
to a CP Solver some congruence reasoning capabilities. We have taken the idea
of equiping the variables with congruence domains from the abstract interpre-
tation community [1], as it leads to efficient and scalable implementations. We
have shown how a CP Solver can benefit from these congruence domains with
several examples, concluding with illustrations on the interaction of interval and
congruence domains.

This work is part of the already distributed ILOG JRules product, and will
be completely integrated in the next ILOG JRules release.

References

1. Granger, P.: Static analysis of arithmetic congruences. International Journal of
Computer Math (1989) 165–199

2. Allen Newell, H.A.S.: Human problem solving. Prentice Hall, Englewood Cliffs,
NJ, USA (1972)

3. Davis, R., Buchanan, B.G., Shortliffe, E.H.: Production rules as a representation
for a knowledge-based consultation program. Artif. Intell. 8(1) (1977) 15–45

4. Forgy, C.: Rete: A fast algorithm for the many patterns/many objects match
problem. Artif. Intell. 19(1) (1982) 17–37

5. Baralis, E., Widom, J.: An algebraic approach to static analysis of active database
rules. ACM Trans. Database Syst. 25(3) (2000) 269–332

6. ILOG: ILOG JRules. (2006) http://www.ilog.com.
7. JBoss: Drools. (2006) http://www.drools.org.
8. Collavizza, H., Rueher, M.: Exploration of the capabilities of constraint program-

ming for software verification. In Hermanns, H., Palsberg, J., eds.: TACAS. Volume
3920 of Lecture Notes in Computer Science., Springer (2006) 182–196

9. Lhomme, O., Gotlieb, A., Rueher, M.: Dynamic optimization of interval narrowing
algorithms. J. Log. Program. 37(1-3) (1998) 165–183

10. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear
ranking functions. In Steffen, B., Levi, G., eds.: VMCAI. Volume 2937 of Lecture
Notes in Computer Science., Springer (2004) 239–251

11. Granger, P.: Static analysis of linear congruence equalities among variables of a
program. In Abramsky, S., Maibaum, T.S.E., eds.: TAPSOFT, Vol.1. Volume 493
of Lecture Notes in Computer Science., Springer (1991) 169–192

12. Balakrishnan, G., Reps, T.W.: Analyzing memory accesses in x86 executables. In
Duesterwald, E., ed.: CC. Volume 2985 of Lecture Notes in Computer Science.,
Springer (2004) 5–23

13. Venable, M., Chouchane, M.R., Karim, M.E., Lakhotia, A.: Analyzing memory
accesses in obfuscated x86 executables. In Julisch, K., Krügel, C., eds.: DIMVA.
Volume 3548 of Lecture Notes in Computer Science., Springer (2005) 1–18

14. Miné, A.: A few graph-based relational numerical abstract domains. In
Hermenegildo, M.V., Puebla, G., eds.: SAS. Volume 2477 of Lecture Notes in Com-
puter Science., Springer (2002) 117–132

15. Bagnara, R.: Data-Flow Analysis for Constraint Logic-Based Languages. PhD
thesis, Dipartimento di Informatica, Università di Pisa, Corso Italia 40, I-56125
Pisa, Italy (1997) Printed as Report TD-1/97.

16. Toman, D., Chomicki, J., Rogers, D.S.: Datalog with integer periodicity con-
straints. In: SLP. (1994) 189–203

17. Bagnara, R., Dobson, K., Hill, P.M., Mundell, M., Zafanella, E.: Grids: A domain
for analyzing the distribution of numerical values. In: LOPSTR. (2006)

18. Müller-Olm, M., Seidl, H.: A generic framework for interprocedural analysis of
numerical properties. In Hankin, C., Siveroni, I., eds.: SAS. Volume 3672 of Lecture
Notes in Computer Science., Springer (2005) 235–250

19. Granger, P.: Static analyses of congruence properties on rational numbers (ex-
tended abstract). In Hentenryck, P.V., ed.: SAS. Volume 1302 of Lecture Notes in
Computer Science., Springer (1997) 278–292

20. ILOG: ILOG JSolver. (2000) http://www.ilog.com.
21. Laurière, J.L.: A language and a program for stating and solving combinatorial

problems. Artif. Intell. 10(1) (1978) 29–127
22. Laurière, J.L.: Programmation de contraintes ou pro-

grammation automatique. Technical report, L.I.T.P. (1996)
http://www.lri.fr/~sebag/Slides/Lauriere/Rabbit.pdf.

23. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL.
(1977) 238–252

24. Cousot, P., Cousot, R.: Static determination of dynamic properties of generalized
type unions. In: Language Design for Reliable Software. (1977) 77–94

25. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The Astrée analyzer. In: ESOP’05. (2005)

26. Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.M.: Possibly not closed convex poly-
hedra and the Parma Polyhedra Library. In Hermenegildo, M.V., Puebla, G., eds.:
Static Analysis: Proceedings of the 9th International Symposium. Volume 2477 of
Lecture Notes in Computer Science., Madrid, Spain, Springer-Verlag, Berlin (2002)
213–229

27. Parma Polyhedra Library: PPL. (2006) http://www.cs.unipr.it/ppl.
28. Knuth, D.E.: Seminumerical Algorithms. Second edn. Volume 2 of The Art of

Computer Programming. Addison-Wesley, Reading, Massachusetts (1981)
29. Hendrick, S.D.: Business Rule Management Systems: Addressing Referential Rule

Integrity. IDC. (2006) http://www.idc.com/getdoc.jsp?containerId=201262.
30. The Eclipse Consortium: Eclipse 3.0. (2005) http://www.eclipse.org.

Generating random values using

Binary Decision Diagrams and Convex Polyhedra

Erwan Jahier Pascal Raymond

September 4, 2006

Abstract

This article describes algorithms to solve Boolean and numerical con-

straints, and to randomly select values among the set of solutions. Those

algorithms were first designed to generate inputs for testing and simulat-

ing reactive real-time programs. As a consequence, the chose a solving

technology that allow a fine control in the way solutions are elected. In-

deed, a fair selection is sometimes required, while favoring limit cases is

often interesting for testing.

Moreover, simulating a single reactive execution means generating sev-

eral hundreds or even several thousands of atomic steps, and thus as many

solving steps. Hence, the emphasis is put on efficiency, sometimes sacri-

ficing precision or fairness.

Keywords: Constraint solving, Test sequences generation, Simulation, Re-
active programs.

1 Introduction

Reactive embedded programs are often critical, and therefore need to be verified.
The ideal is to verify programs exhaustively, using formal verification methods
such as model-checking, deductive reasoning, or abstract interpretation. These
methods face both theoretical problems like undecidability, and practical prob-
lems like state explosions. In practice, they are limited to relatively simple and
small systems. Test and simulation, that do not explore the whole state space,
remain the only tractable method for complex and huge systems.

Complex reactive systems are not supposed to behave correctly in a chaotic
environment, and thus a completely random test generation is likely to pro-
duce irrelevant executions. As a matter of fact, the environment, while non-
deterministic, is in general far from random: it satisfies known properties that
must be taken into account to generate realistic test sequences.

A testing framework has been defined which includes languages for describing
constrained random scenarios [16]. More precisely, an atomic step is described
by a constraint on the current values of the variables. Those steps are then

2

2 BDD AND CONVEX POLYHEDRA 3

combined with control structures describing the possible dynamic behavior (se-
quence, loop, non-deterministic choice). This dynamic aspect is not presented
here (see [16, 8] for further detail). This article focuses on the basic problem of
solving a constraint and generating a single step.

In order to tackle realistic problems, we want to handle both logical and
numerical constraints. We also want the solver to be fully automatic, and thus
we restrict ourself to a decidable domain: the domain of linear constraints.

The proposed solving method requires the construction of a normalized rep-
resentation of constraints. This normal form is based on Binary Decision Dia-
grams for the logical part, and convex polyhedra for the numerical part.

The article is organized as follows. Section 2 first recalls the basic principles
of BDDs and convex polyhedra; then Section 3 presents the solving process;
Section 4 presents the solution selection; Section 5 presents associated tools;
Section 6 presents related work.

2 BDD and convex polyhedra

The constraints we want to solve are a mixture of Boolean and linear numeri-
cal constraints. Basically, the formers are handled with BDD (Binary Decision
Diagram), and the latter with convex polyhedra. We briefly review these rep-
resentations before explaining how we use them.

2.1 Binary Decision Diagram (BDD)

A Binary Decision Diagram is a concise representation of the Shannon decom-
position of a Boolean function [3]. More precisely, the BDD of a formula f is
a Directed Acyclic graph (DAG) where each node is labelled by a variable of
f . The top-level node is the only node that has no predecessor. The two only
possible leaves are labeled by true and false. Each node has two successors: the
then branch, and the else branch. During a traversal from the top-level node
to a leaf, the variables always occur is the same order.

All solutions of a formula can be obtained by enumerating in its BDD all
paths from the top-level node to the true leaf. For such a path, when a node
is traversed using its then branch (resp. else branch), it means that the corre-
sponding variable is true (resp. false).

Figure 1 shows a graphical representation of a BDD; then (resp else) branches
are represented at the left-hand-side (resp right-hand-side) of the tree. This
BDD contains 3 paths to the true leaf: ade, abce, and abd. When we say that
the monomial (conjunction of literals) abce is a solution of the formula, it means
that variables a and e should be false, variables b and c should be true, and vari-
able d can be either true or false. The monomial abce therefore represents two
solutions, whereas ade and abd represents 4 solutions each, since 2 variables are
left unconstrained.

In Figure 1 and in the following, for the sake of simplicity, we draw trees
instead of DAGs. The key reason why BDDs work well in practice is that in

3 THE RESOLUTION ALGORITHM 4

a

jjjjjjjjjjjj

TTTTTTTTTTTT

d

��
��

��

<<
<<

<<
b

qqqqqqqqq

MMMMMMMMM

e

��
��

��

>>
>>

>>
false

c

��
��

��

>>
>>

>>
d

��
��

��

>>
>>

>>

true false
e

}}
}}

}

AA
AA

A
false true false

false true

Figure 1: A BDD containing 10 solutions (ade, abce, and abd).

their implementations, common sub-trees are shared. For example, only one
node “true” would be necessary in that graph. Anyway, the algorithms in the
sequel work on DAGS the same way as they work on trees.

2.2 Convex Polyhedra

The objective is to solve linear inequations, namely, to compute systems of the
form P = {X|AX ≤ B}, where A is a n × m-matrix of constants, and B a
m-vector of constants. Such a system define a convex polyhedron.

If all variables are bounded1, solving such systems requires to compute a set
of polyhedron generators, namely, to compute the vertices v1, . . . , vk such that
P = {

∑
i=1,k αi.vi|

∑
i=1,k αi = 1}. Reasonably efficient algorithms exist for

that purpose, and several convex polyhedron libraries are freely available on the
web [9, 1, 18]. They are all based on an algorithm due to Chernikova [4].

3 The resolution algorithm

3.1 The constraints domain

The input constraint language combines Boolean and numeric linear variables,
constants, and operators. The syntax rules are given in Figure 2. The top-level
constraint is a Boolean expression (〈eb〉).

1Existing libraries are not restricted to bounded polyhedron, but for software testing pur-
poses, we are only interested in bounded ones.

3 THE RESOLUTION ALGORITHM 5

〈eb〉 → Vb | true | false | not 〈eb〉 | 〈eb〉⋆b〈eb〉 | 〈en〉⋆n〈en〉 | (〈eb〉)
〈en〉 → Vn | N | N .〈en〉 | 〈en〉⋆±〈en〉 | if 〈eb〉 then 〈en〉 else 〈en〉 | (〈en〉)
⋆b → ∨ | ∧ | xor | =⇒ | ...
⋆n → > | ≥ | < | ≤ | =
⋆± → + | −

N , Vb, and Vnrespectively stand for numeric constants, Boolean variables, and
numeric variables.

Figure 2: Constraint syntax rules

3.2 Get rid of if-then-else

The first step is to transform constraints to remove if-then-else constructs. In-
deed, together with the comparison operators, the “if-then-else” construct lets
one combine numeric and Boolean arbitrarily deeply. And this does not fit
in the resolution scheme we propose later in Section 3.3. The key idea of the
transformation is to put the formula into the normalized form:

if c1 then e1 else if c2 then e2 else . . . else if cn then en

where the Boolean expressions c1, . . . , cn do not contain “if-then-else”. This
transformation can be done recursively on the constraint syntax structure, as
described in Figure 3. This transformation have the property to produce a set
of conditions {c1, . . . , cn} that forms a partition (i 6= j =⇒ ci ∧ cj = false,
and ∨i=1,nci = true). Therefore, for the sake of conciseness, we note such
expressions as a set of couples made of a condition and a numeric expression:
{(ci, num expri)}i=1,n.

If t(e1) = {(ci
1
, ei

1
)}i=1,n and t(e2) = {(cj

2
, e

j
2
)}j=1,m, then we have:

• t(e1 + e2) = {ci
1
∧ c

j
2
, ei

1
+ e

j
2
}j=1,m

i=1,n (ditto for “−”, “∗”, etc.)

• t(if c then e1 else e2) = {(tB(c) ∧ ci
1
, ei

1
)}i=1,n ∪ {(tB(c) ∧ c

j
2
, e

j
2
)}j=1,m

• tB(e1 ≤ e2) = tB(e1 − e2 ≤ 0)

• tB(e1 ≤ 0) = ∨i=1,n(ei
1
≤ 0 ∧ ci

1
) (ditto for “≥”, “<”, “>”, “=”, “6=”)

Figure 3: Remove “if-then-else” from constraints. t transforms numeric expres-
sions, and tB transforms Boolean expressions.

During this transformation, one can simplify the resulting set by merging
conditions corresponding to the same numeric expressions, and by removing
couples where the condition is false. However, the transformation into BDD
performed later will automatically do that.

4 CHOOSING SOLUTIONS 6

3.3 A two-layered resolution scheme

Solving Booleans. We first replace numeric constraints by new intermediary
Boolean variables: αi = n1 ⋆n n2. The resulting expression contains only
Boolean variables and operators, and can therefore be translated into a BDD.
This BDD provides the set all the Boolean solutions of the constraint.

Solving Numerics. For each of the Boolean solution, namely, for each path in
the BDD, we obtain a set of linear numeric constraints {αi}i. Those constraints
are sent to a numeric constraint solver that is based on a convex polyhedra
library. On demand, the solver can return the set of generators corresponding
to the convex polyhedron defined by the sent constraints. Of course, among the
Boolean solutions, some of them are associated to an empty set of solutions.

In the end, each constraint is translated into a BDD that represents a union
of (possibly empty) convex polyhedra.

4 Choosing solutions

In order to generate test sequences, once the set of solutions is computed, one
of those has to be chosen. Using convex polyhedron, this set of solutions is
represented by a set of generators, which makes it very easy to favor limit cases.
A little bit more complex task is to perform a fair choice efficiently. However, as
we discuss later, being fair sometimes costs too much. We present in the sequel
some heuristics leading to reasonable trade-offs.

4.1 Random choice of Boolean values

The first step consists in selecting a Boolean solution. Once the constraint has
been translated into a BDD, we have a (hopefully compact) representation of
the set of solutions. We first need to randomly choose a path into the BDD that
leads to a true leaf. But if we naively perform a fair toss at each branch of the
BDD during this traversal, we would be very unfair. Indeed, consider the BDD
of Figure 1; the monomial ade has 50% of chances to be tried, whereas abce,
and abd have 25% each. One can easily imagine situation where the situation is
even worse. This is the reason why counting the solutions before drawing them
is necessary.

Note that in order to count the number of solutions, we cannot use integers,
or even doubles. Indeed, we would be restricted to 32 or 1024 variables2. One
possibility would be to use unbounded integers. However, for performance rea-
sons, we have preferred to implement a kind of big float data structure, where
the mantissa and the exponent are represented by unsigned integers. Indeed,
we just need to add and to multiply positive integers, and such a representation

2Keep in mind that every atomic numeric constraint is encoded into a Boolean variable
during the transformation, therefore 1024 is not that big.

4 CHOOSING SOLUTIONS 7

makes it very cheap. The slight loss of precision is also insignificant for our
purposes.

Once each branch of the BDD is decorated with its solution number, per-
forming a fair choice among Boolean solutions is straightforward.

4.2 Random choice of numeric values

4.2.1 Taking numerics into account during the BDD traversal

From the BDD point of view, numeric constraints are just Boolean variables.
This means that a solution from the logical variables point of view may lead to
an empty set of solutions for numeric variables.

A naive method would be to select at random a path in the BDD, and then
to check if that selection corresponds to a satisfiable problem for the numeric
constraints. If it is not the case, then we should start again from the last
choice point, namely, from the last node in the BDD path that corresponds to
a numeric variable. Indeed, if we do not start from that last choice point but
from the BDD top-level node, we change the probability because we give more
chances to the BDD part that have less unsatisfiable paths for numeric reasons.
The problem with this method is that it could lead to a big number of such
backtracking steps before finding a valid numeric solution.

An alternative method that would avoid such useless backtracking consists
in solving the numeric constraints during the traversal, in order to be able to cut
zero-solution branches earlier. But then we are faced to the following efficiency
issue: consider the following constraint : a+ b+ c < 1 ∧ a+ b = 2 ∧ b− c = 3,
and suppose that the constraint a + b + c < 1 appears first during the BDD
traversal; this means that a polyhedron of dimension 3 will be created although
the problem is of dimension 1. Maybe for dimension 3 it is not a major problem,
but for higher dimensions it can be. Indeed, solving such linear constraints using
convex polyhedron libraries is exponential in the dimension of the polyhedron.

Hence, we choose to implement an intermediary solution: take into account
constraints of dimension 1 during the random selection3, and delay constraints
of higher dimensions until the a leaf is reached. If the set of solutions becomes
empty during the draw, we backtrack to the previous choice point as in the
first method. Whenever an equality is traversed during the draw, we apply the
corresponding substitution to the set of delayed constraints, and check whether
some of them become of dimension 1. If it is the case, such awaken constraints
are sent to the solver. At the end of the BDD traversal, when a leaf is reached,
delayed constraints are sent to the solver; and again, if the set of solutions is
empty, we backtrack.

4.2.2 Favoring limit cases

In order to generate value sequences for feeding a program under test, it is
often useful to try limit values at domain boundaries. Since convex polyhedron

3solving linear constraint on intervals does not require any convex polyhedron library.

4 CHOOSING SOLUTIONS 8

libraries return the set of polyhedron generators, choosing randomly among
vertices, or edges, or faces is easy.

One heuristic we use that is computationally cheap and that appears to be
quite effective is the following. Consider a set of n generators {γi}i=1,n of a
polyhedron of dimension k.

1. Draw one generator p.

2. Draw another generator γj in {γi}i=1,n.

3. Draw a point p′ between p and γj .

4. Go back to step 2 with p = p′, k − 1 times.

The advantage of this heuristic is that, since at step 2 the same γj can be
chosen several times, vertices are favored, and then edges, and then faces, and
so on, whatever the dimension of the polyhedron is.

4.2.3 Drawing numerics uniformly

At the end of the process, we have a valuation for each of the Boolean variables,
plus a set of generators representing several possible valuations for the numeric
variables. In order to complete the random selection process, one needs to
randomly choose such a numeric valuation using the generators.

The only method we are aware of to perform this choice uniformly is to
draw inside the smallest parallelepiped parallel to the origin axes containing the
polyhedron until a point inside the polyhedron is found. That parallelepiped can
be obtained by computing the minimum and the maximum values of generators
for each of their components.

4.3 Fairness versus efficiency

4.3.1 Fairly choosing numerics is expensive

The algorithm proposed in 4.2.3 suffers from a major performance problem.
Indeed, drawing into the smallest parallelepiped parallel to the axes is not that
expensive: O(n.d), where d is the polyhedron dimension (d), and n the number
of generators (the draw is O(d) by itself, but obtaining the parallelepiped is
O(n.d)). But the number of necessary draws depend on the ratio between the
volume of the polyhedron and the volume of the parallelepiped. And this ratio
can be very small.

For example, when the dimension of the polyhedron is smaller than the one
of the parallelepiped, the theoretic ratio is 0. It is not always true for the
numeric values effectively representable on a machine, but still, the ratio is very
small. By changing the base using a Gauss method, one can augment this ratio.
But as the dimension increases (≥ 10), doing that is not sufficient.

A solution would be to compute the smallest surrounding parallelepiped (via
rotations), but this ought to be very costly. We have also considered performing

5 AVAILABLE TOOLS 9

a random walk in the polyhedron: but in order to know when to stop the walk,
we need to know the volume of polyhedron, which is also very expensive [12].

A rather efficient algorithm to draw inside a convex polyhedron is to use
a variant of the algorithm of Section 4.2.2, choosing a different generator each
time at step 2. But this leads to a distribution that is not uniform: points tend
to concentrate close to vertices. To our knowledge, there is no computationally
simple way to perform such a uniform draw. However, for high dimensions, this
seems to be a reasonable trade-off, especially for testing purposes.

Even if it means to lose completely the control over the distribution, another
thing that could be done would be to use enumerative techniques based on
Simplex.

4.3.2 Combining Booleans and numerics

In some cases, the algorithms we have presented so far may lead to counter-
intuitive distribution. Consider for example the constraint over the integer
variable x: “0 < x < 100 ∧ x 6= 2”. In the corresponding BDD, one path
will lead to a polyhedron made of the point x = 1, and the other one to the
polyhedron made of points between 3 and 99. And each of those paths will have
the same probability to be chosen (if we count the Boolean solution numbers).

In order to be fair, we need to compute the polyhedron volume for each
path, and take it into account when counting the number of solutions. But this
computation is very expensive for high dimensions. Moreover, since different
polyhedra correspond to different paths in the BDD, we need to change a little
bit our BDD representation as follows: a BDD node is not only associated to
a Boolean variable or an atomic numeric constraint (noted αi in 3.3); it is also
associated the set of atomic numeric constraints that are between the node and
the top-level node. Doing that, we loose some the shareness in the BDD: the one
that concerned numeric constraints. Therefore, taking into account the volume
of polyhedron definitely needs to be an option.

5 Available Tools

All the tools presented in the sequel are freely available on the web at the URL:
http://www-verimag.imag.fr/ synchron/index.php?page=tools

LuckyDraw. The solving and drawing algorithms presented here are provided
under the form of an Ocaml and a C API 4. Both the underlying BDD and
polyhedra library have been developed at Verimag and are available separately.

This library is used in Rennes by the STG tool (Symbolic Test Generation).
STG aims at generating and executing test cases using symbolic techniques [10].
LuckyDraw is used at the final stage in order to generate a concrete trace se-
quence from a symbolic automaton describing several scenarii.

4Many thanks to B. Jeannet for the C-Ocaml interfacing work

6 RELATED WORK 10

Lucky, Lutin, Lurette. The LuckyDraw library is one of the main building-
block of Lutin and Lucky5, languages dedicated to the programming of stochas-
tic reactive systems. Basically, the constraint language presented here is ex-
tended with (1) an explicit control structure, (2) a mechanism to instantiate
input and memory variables, (3) and external function calls (to be applied on
input and memory variables only). Those languages were originally designed to
model reactive program environments in the Lurette testing tool [8].

Some issues with the current version of those tools. In our implemen-
tation, numeric values are represented by rationals, because the polyhedron
library we use uses rationals. However, Using the same representation as the
program under test (typically, floats or doubles) would certainly be better, in
particular for testing.

Integers are also approximated by rationals: we draw a rational, and then we
truncate it to obtain an integer. If the obtained solution is not valid, we draw
another one. This process is problematic when the number of integer solutions
is small, and pathologic for non-empty rational polyhedra that do not contain
any integer solution. When no valid solution is found after a certain number
of tries, our current implementation (maybe wrongly) pretends that there is no
solution at all. It would be better to use a finite domain solver in that case,
which should do quite well in such cases where the domain is small.

We could use such finite domains solvers from the beginning, but constraint
solving for linear systems is very hard, in particular when the domain is big.

6 Related work

A lot of authors describe how to generate random-based test sequences us-
ing Constraint Logic Programming (CLP) or other external constraint solvers.
Constraint-based techniques tackle quite general constraints, whereas we focus
on linear constraints. Moreover, most authors uses enumerative techniques such
as SAT for booleans and simplex for numerics, whereas we use more constructive
techniques (BDD and convex polyhedron). The main advantage of constructive
techniques is to provide a finer-grained control over the distribution of the val-
ues to be generated. Besides, very few author describe precisely the drawing
heuristics they use, in particular with respect to numeric values.

Glass-box testing. Some authors [7, 2, 13] aim at generating input values in
order to reach the maximal level of coverage with respect to a given criterion.
The program under test is encoded into a CLP program, in such a way that
generating inputs to cover a given path in the control flow graph consists in
writing suitable CLP requests. Constraint filtering (constraint propagation)
phases are combined with labelling phases, using several heuristics, such as:
selecting the variable with the smallest domain; selecting the more constrainted

5www-verimag.imag.fr/∼synchron/tools.html

6 RELATED WORK 11

variable; or splitting domains. Somehow, using heuristics that way during the
labelling leads to different ways of generating test data as in our work, but it is
not clear which heuristics lead to what distribution for output variables in their
framework (it was not their objective).

Drawing in a graph. Several works describe constraints-based methods [5]
and heuristics [15] to generated random test values using graphs. But as already
mentioned above and in Section 5, we also have an explicit control structure in
order to control finely the distribution [16] (although we hardly describe this in
this article).

Other work uses constraint solvers to generate test sequences for B and Z
specifications [11]. Their test objective is to generate values that exercise their
boundaries. A Finite State Automation (FSA) that represents a set of abstract
executions is obtained via a reachability analysis. Then, they try to find a
concrete path in the abstract FSA to reach desired states. The way they con-
cretize a trace from a FSA is comparable to what we do with Lucky [16], the
difference being that their FSA are automatically generated, whereas we provide
a language to program them. In other words, we focus on the stochastic con-
cretization whereas they focus on the generation of the FSA. In [6], we described
how Lucky FSA can be generated using the Nbac abstract interpretation based
tool in order to reach desired set of states. Those FSA were actually Lucky
programs, that are simulated (concretized) using the algorithms presented here.

Generating floating-point numbers values. Another difference with most
works using constraint solvers to generate test is that they use finite domain
solvers, whereas we more specifically deal with floating-point numbers or ratio-
nals. The domain of floating-point numbers is also finite, but it is much bigger
and finite domain solvers are quite inefficient with floats.

Solvers dedicated to floating-point numbers exist, although they are not al-
ways well-suited for program analysis in general, and test sequence generation
in particular. [14] proposes specific constraint solving algorithms that pay par-
ticular attention to mismatch between reals and floats, as well as to rounding
errors performed by usual solvers. The test generation performed using those
algorithms is similar to previously mentioned article: they try to reach specific
program points using verification techniques.

A language-oriented approach. Another difference with other works on
constraint based program testing is that we adopt a language-oriented approach.
Basically, when one wants to test a program using formal techniques, it is be-
cause the state space is too big to perform an exhaustive exploration. Instead
of providing methods and algorithms to prune out some of the branches of the
exploration graph, we provide random based programming languages (Lucky,
Lutin) to explore the state space [16].

7 CONCLUSION 12

7 Conclusion

We have presented algorithms to solve linear constraints combining Boolean
and numeric variables, as well as several heuristics to choose data values among
the constraint solutions. Albeit they sometimes handle non-linear constraints,
other constraint based techniques for generating test sequences generally tar-
gets finite domain variables (integers). Moreover, they are based on enumerative
techniques (SAT, Simplex) that make it difficult to provide a fine-grained control
over the distribution of the generated values. The algorithms and the associ-
ated library presented in this article are used as one of the main component of
automatic test generation tools [17, 8].

References

[1] Roberto Bagnara, Elisa Ricci, Enea Zaffanella, and Patricia M. Hill. Possi-
bly not closed convex polyhedra and the parma polyhedra library. In SAS,
volume 2477 of LNCS, pages 213–229. Springer, 2002.

[2] B. Botella, A. Gotlieb, C. Michel, M. Rueher, and P. Taillibert. Utilisation
des contraintes pour la génération automatique de cas de test structurels.
Technique et Science Informatiques, 21(9):1163–1187, 2002.

[3] Randal E. Bryant. Graph-based algorithms for boolean function manipu-
lation. IEEE Trans. Computers, 35(8):677–691, 1986.

[4] N. V. Chernikova. Algorithm for discovering the set of all solutions of a
linear programming problem. U.S.S.R. Computational Mathematics and
Mathematical Physics, 8(6), 1968.

[5] Alain Denise, Marie-Claude Gaudel, and Sandrine-Dominique Gouraud.
A generic method for statistical testing. In ISSRE, pages 25–34. IEEE
Computer Society, 2004.

[6] F. Gaucher, E. Jahier, F. Maraninchi, and B. Jeannet. Automatic state
reaching for debugging reactive programs. In AADEBUG, Fifth Int. Work-
shop on Automated and Algorithmic Debugging. HAL - CCSd - CNRS,
November 14 2003.

[7] A. Gotlieb, B. Botella, and M. Rueher. Automatic test data generation
using constraint solving techniques. In ISSTA, pages 53–62, 1998.

[8] E. Jahier, P. Raymond, and P. Baufreton. Case studies with lurette v2.
International Journal on Software Tools for Technology Transfer (STTT),
Special Section on Leveraging Applications of Formal Methods, 2006.

[9] B. Jeannet. The Polka Convex Polyhedra library Edition 2.0, May 2002.
www.irisa.fr/prive/bjeannet/newpolka.html.

REFERENCES 13

[10] B. Jeannet, T. Jéron, V. Rusu, and E. Zinovieva. Symbolic test selection
based on approximate analysis. In N. Halbwachs and L. D. Zuck, editors,
TACAS, volume 3440 of LNCS, pages 349–364. Springer, 2005.

[11] Bruno Legeard, Fabien Peureux, and Mark Utting. Automated boundary
testing from z and b. In L.H. Eriksson and P. A. Lindsay, editors, FME,
volume 2391 of LNCS, pages 21–40. Springer, 2002.

[12] L. Lovász and M. Simonovits. Random walks in a convex body and an
improved volume algorithm. Random Structures and Algorithms, 4(4):359–
412, 1993.

[13] B. Marre and A. Arnould. Test sequences generation from lustre descrip-
tions: Gatel. In ASE, pages 229–, 2000.

[14] Claude Michel, Michel Rueher, and Yahia Lebbah. Solving constraints over
floating-point numbers. In Toby Walsh, editor, CP, volume 2239 of LNCS,
pages 524–538. Springer, 2001.

[15] A. Pretschner. Classical search strategies for test case generation with con-
straint logic programming. In BRICS, editor, Proceedings of the Workshop
on Formal Approaches to Testing of Software (FATES’01), pages 47–60,
Aalborg, Denmark, 2001.

[16] P. Raymond, E. Jahier, and Y. Roux. Describing and executing random
reactive systems. In 4th IEEE International Conference on Software Engi-
neering and Formal Methods, Pune, India, September 11-15 2006.

[17] P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs. Automatic testing
of reactive systems. In 19th IEEE Real-Time Systems Symposium, Madrid,
Spain, December 1998.

[18] D. Wilde. A library for doing polyhedral operations, 1993.

Requirements for Constraint Solvers in

Verification of Data-Intensive Embedded System

Software⋆

Qiang Fu1, Maurice Bruynooghe1, Gerda Janssens1, and Francky Catthoor2

1 Katholieke Universiteit Leuven, Department of Computer Science,
Celestijnenlaan 200A, B-3001 Heverlee, Belgium

qiang,maurice,gerda@cs.kuleuven.be
2 IMEC vzw, Kapeldreef 75, B-3001 Heverlee, Belgium

catthoor@imec.be

Abstract. In tuning data-intensive software such as multimedia and
telecom applications for embedded processors in portable devices, de-
signers use a combination of automated and manual transformations at
the source level to optimize the resource consumption of the software.
It is of crucial importance that the functionality of the software is pre-
served. For software with static control, a verification method exists that
first transforms the code into dynamic single assignment form and next
verifies the functional equivalence of the two versions. The verification is
based on geometric modelling using polyhedra.

In this paper, we describe in detail the basic operations of the verification
method, discuss the control issues that affect its overall performance, and
analyze the functionalities that constraint solvers have to offer to handle
this application.

1 Introduction

Embedded systems for the consumer electronics market run data-intensive mul-
timedia and telecom applications on devices with severe resource constraints.
Designing such systems is a complex task. Typically, designers start from an
initial design assembled by a straightforward combination of trusted algorithms
in a high level language. Then designers want to optimize performance, area on
chip, power consumption and overall cost of the design. For that purpose, they
use analysis tools and perform a mix of automated and manual transformations
according to some design methodology (e.g. [4]) to parallelize the loops or to im-
prove the array related memory management. Figure 1 illustrates a typical loop
transformation which would benefit the memory size. The whole process is very
error prone. Moreover, once the design in the high level language is frozen and
implemented in the embedded system, the cost of bugs in the design becomes
excessive. Hence there is a need for thorough testing and/or verification.

⋆ Work supported by FWO-Vlaanderen

void foo(int in, int b) {

 const int N=5;
 int i,j,p,k,l,a[N+1][N];

 for (i = 1; i <= N; ++i)
o1: a[0][i] = 5;
 for (j = 1; j <= N-i+1; ++j)
o2: a[i][j] = in[i][j] + a[i-1][j];

 for(p = 1; p <= N; ++p)
o3: b[p][1] = f(a[N-p+1][p], a[N-p][p]);

 for(k = 1; k <= N; ++k)
 for (l = 1; l <= k; ++l)
o4: b[k][l+1] = g(b[k][l]);
}

void foo(int in, int b){

 const int N=5;
 int i,j,l,a[N+1][N];

 for(i = 1; i <= N; ++i)
t1: a[0][i] = 5;

 for(j = 1; j <= N; ++j) {
 for (i = 1; i <= N-j+1; ++i)
t2: a[i][j] = in[i][j] + a[i-1][j];
t3: b[j][1] = f(a[N-j+1][j], a[N-j][j]);
 for (l = 1; l <= j; ++l)
t4: b[j][l+1] = g(b[j][l]);
 }
}

original program transformed program

Fig. 1. Program before and after loop transformation.

For (parts of) systems with static control flow where conditions, index ex-
pressions, and bounds on iterators are (piecewise) affine functions of the bounds
of the surrounding iterators and where no pointer references occur, the code can
be transformed to so called Dynamic Single Assignment (DSA) code [5] where
each array element is written only once by methods described in [5,15]. This
meets the requirements of a very relevant subset of all possible application codes
in our target domain. The resulting code is functional: Each element of an out-
put array is a function of a set of elements of the input arrays. Verification of
the equivalence of original and transformed code then reduces to checking for
each output element that the function mapping inputs to outputs is equivalent.
In order to ensure scalability to realistic data and loop sizes in the embedded
system domain, the crux of the methods is to do this verification not element by
element but to handle at once groups of elements for which the function is the
same. Such methods are described in [1,13].

Those methods rely on the use of the geometric model (also called poly-
hedral/polytope model) for representing the meaning of programs. Geometric
modelling of programs is well known in the parallel compiler and regular array
synthesis research domains and is used extensively to analyze the execution of
program statements [5,11,12]. The geometric model concisely represents all of
the necessary information about the data and control flow in the program. The
basic idea is to represent the iterations for which a statement is executed by the
integer points in a polytope, i.e., a bounded polyhedron. A polyhedron is a sub-
space in n-dimensional space bounded by a finite number of hyperplanes. These
hyperplanes can be represented as a system of linear inequalities. The latter can
be extracted from the iterator bounds and conditions that control the execution
of the statement.

This paper develops in more detail the method sketched in [13], discusses con-
trol issues that affect the performance, and analyzes the functional requirements
for the constraint solving. In Section 2, we explain the geometric modelling of the

2

program. The concept of proof obligations is introduced in Section 3. Also the
basic operations to reduce proof obligations together with the functionality they
require from the underlying constraint solvers are described in this section. In
Section 4, we discuss how to avoid redundant computations during the reduction
of proof obligations. Handling recurrences is presented in Section 5. In Section 6,
we discuss in more detail which operations are required and how existing solvers
provide support for them. Section 7 concludes.

2 Program representation under the geometric model

Geometric modelling is used by many authors. Here we recall the basics by means
of some examples. Consider statement o2 in Figure 1 (with N substituted by its
value) which is a writer of array a and a reader of arrays in and a:

for (i = 1; i <= 5; ++i)

for (j = 1; j <= 5-i+1; ++j)

o2: a[i][j] = in[i][j] + a[i-1][j];

The iteration domain is a relation over the iterators governing the state-
ment. Each tuple (i, j) in the relation defines a value of the iterators for which
the statement is executed. The relation is described by the integer points in a
polytope: D = {(i, j) | i ≥ 1 ∧ i ≤ 5 ∧ j ≥ 1 ∧ j ≤ 5 − i + 1}.

The definition domain is a relation over the indices of the array in the left
hand side of the statement. It defines which elements of the array are written
by the statement. Also this relation can be described by the integer points in
a polytope: Wa = {(a1, a2) | ∃i, j : a1 = i ∧ a2 = j ∧ (i, j) ∈ D} = {(a1, a2) |
∃i, j : a1 = i ∧ a2 = j ∧ i ≥ 1 ∧ i ≤ 5 ∧ j ≥ 1 ∧ j ≤ 5 − i + 1}. Because
the program is in DSA form, the constraints define a bijection between the
indices a1 and a2 of the array and the iterators i and j. Using the two equalities,
the existentially quantified variable i and j can be eliminated and one obtains
Wa = {(a1, a2) | a1 ≥ 1 ∧ a1 ≤ 5 ∧ a2 ≥ 1 ∧ a2 ≤ 5 − a1 + 1}.

For each operand in the right hand side, one can define an operand domain.
It is a relation over the indices of the operand array. It defines which elements
of the array are read by the statement. Similar to the definition domain, it can
be described by the integer points in a polytope. For the second operand, it is
given by: Ra = {(a1, a2) | ∃i, j : a1 = i − 1 ∧ a2 = j ∧ (i, j) ∈ D}. Note that
there is a functional dependency from the iterators to the indices as one value is
read in each iteration, but in general not from the indices to the iterators as the
same value can be read in different iterations. Again, i and j can be eliminated
and we obtain Ra = {(a1, a2) | a1 + 1 ≥ 1 ∧ a1 + 1 ≤ 5 ∧ a2 ≥ 1 ∧ a2 ≤ 5 − a1}.

Each executed instance of the statement reads values from elements in the
operand arrays and writes a value in an element of the lhs array. For each
operand, there is a dependence mapping that defines which operand element
is read for each written element. As said above, the relation between the indices of
the lhs array and the iterators is a bijection while there is functional dependency
between the iterators and the indices of the operand array, hence the dependency

3

mapping can be understood as a function from the indices of the lhs array to
the indices of the operand array (and is in general not invertible). To stress
that the dependence mapping encodes a functional dependency, we denote it as
M(i → j) with i the indices of the written array and j the indices of the operand
array. Also this relation can be represented by the integer points of a polytope.
For the second operand of our example, we have: M((a′

1, a
′

2) → (a1, a2)) =
{a′

1, a
′

2, a1, a2 | ∃i, j : a′

1 = i ∧ a′

2 = j ∧ a1 = i − 1 ∧ a2 = j ∧ (i, j) ∈ D} =
{a′

1, a
′

2, a1, a2 | a′

1 = a1 +1∧a2 = a′

2∧a′

1 ≥ 1∧a′

1 ≤ 5∧a′

2 ≥ 1∧a′

2 ≤ 5−a′

1+1}.
In general, with m the dimension of the array being written and n the dimension
of the array being read, the dependence mapping is a polytope in a space of
dimension m + n. The dimension of the polytope however can be lower, because
the constraints can imply equalities.

Statements can be written in a normal form where all indices of the lhs
array are distinct variables and the indices of the rhs arrays are functions of
the indices of the lhs side. The latter correspond to the dependency mapping of
the statement. This normal form, together with the constraints on the indices
forms the geometric model of the statement and completely characterizes it. The
statement o2 is already in normal form as the indices are the iterators. The
constraints are those of the iterator domain.

While in the above examples, the relation of interest is represented by all

integer points inside a polytope, this is not always the case. Consider for example
a for loop with a non-unit stride:

for i=1, i<=21; i= i+5

Its iteration domain is modelled by the formula D = {(i) | ∃k : i ≥ 1 ∧ i ≤
21∧ i = 1+5k} which contains an existentially quantified variable. The relation
represents the points in the set {1, 6, 11, 16, 21}; these are not all the integer
points inside (i ≥ 1 ∧ i ≤ 21) which is the projection of the original two dimen-
sional polyhedron (i ≥ 1∧i ≤ 21∧i = 1+5k) upon i. The existentially quantified
variable is also introduced when normalizing a statement such as a[2i] =
Indeed, normalization will replace it with a[k] = ... and compute a constraint
(∃i : k = 2i ∧ . . . ≤ i ≤ . . .) in a normal form. Also modulo operations and
integer division can give rise to such variables. These formulae with existentially
quantified variables belong to the class of the Presburger formulae.

Now, a program can simply be represented by the geometric models of the
statements. The dependencies between reads and writes are captured by the use-
def chains which can be derived from the geometric models of the statements.
Note that the exact execution order is not modelled since it is irrelevant to the
verification purpose.

3 Verification method

Our verification task consists of proving that the original and the transformed
programs compute the same outputs when their inputs are equal. To do so, one
is given the names of the corresponding input and output arrays. Also, one can

4

assume that the functions called by programs are side-effect free and have not
been modified by the transformation, that the programs are in DSA form and
that the data flow is correct, i.e., that values are read after being written (or
are available as input). In what follows, we use some notational conventions.
The arrays in the original and the transformed program are distinguished by the
respective superscript o and t. A vector (i1, . . . , in) is denoted as i; il refers its lth

element. In the verification task for the programs of Figure 1, the corresponding
input arrays are ino and int; the corresponding output arrays are bo and bt.

The verification task can be expressed by a (conjunction of) proof obliga-
tion(s). A proof obligation describes an equivalence relation that must hold
between one expression from the original program and the other one from the
transformed program. It is formalized as a tuple (expo(i), expt(j), P (i, j)), where
expo(i) and expt(j) are expressions from the original and transformed program
respectively; these expressions are parameterized by respective vectors of vari-
ables i and j. P (i, j) is a set of constraints that specifies a relation between the
vectors i and j (the tuples in the relation are the integer points in the polytope).
The meaning is: for each pair (i, j) ∈ P (i, j) (i.e., all integer solutions of P) the
equality expo(i) = expt(j) has to be proven.

For example, the verification task of Figure 1 can be modelled by the proof
obligation (bo[i1, i2], b

t[j1, j2], P ((i1, i2), (j1, j2))), in which P ((i1, i2), (j1, j2)) =
{(i1, i2), (j1, j2) | i1 = j1 ∧ i2 = j2 ∧ i1 ≥ 1 ∧ i1 ≤ 5 ∧ i2 ≥ 1 ∧ i2 ≤
i1 + 1 ∧ j1 ≥ 1 ∧ j1 ≤ 5 ∧ j2 ≥ 1 ∧ j2 ≤ j1 + 1}. This proof obligation be-
tween output arrays bo and bt expresses that both programs are equivalent if
one proves that bo[i1, i2] = bt[j1, j2] for all pairs (i, j) ∈ P . While in the initial
proof obligation, the relation between i and j is a bijection, this is in general
not the case. Also, the given correspondence between input arrays can be ex-
pressed in this form (as assumptions). For our example it can be formulated as :
(ino[i1, i2], in

t[j1, j2], {(i1, i2), (j1, j2)|i1 = j1 ∧ i2 = j2 ∧ i1 ≥ 1 ∧ i1 ≤ 5 ∧ i2 ≥
1 ∧ i2 ≤ 5)}.

The verification method then consists of using the geometric models of the
program statements to reduce the initial proof obligations to proof obligations
that trivially hold because they belong to the assumptions.

Reduction of proof obligations There are three basic reduction steps:

Reduction I Peeling expressions in a proof obligation of the form

(f(expo

1(i), . . . , expo

n(i)), f(expt

1(j), . . . , expt

n(j)), P (i, j))

The method leaves the functions uninterpreted and imposes (as sufficient
condition) that the arguments of the functions must be pairwise equiva-
lent3. Hence the proof obligation is replaced by the conjunction of n proof
obligations of the form (expo

k
(i), expt

k
(j), P (i, j)). The proof fails if different

top level function symbols are found. This indicates an error in the transfor-
mation.

3 See [13] for a discussion how to extend the approach for handling commutative and
associative functions.

5

Reduction II Propagation across an assignment. If one of the expressions is
an array reference, the corresponding writers of the array can be used to
reduce the proof obligation. Without loss of generality, let us assume a
proof obligation of the form (ao[f(i)], expt(j), P (i, j)), i.e., with an ar-
ray reference from the original program. Let the normalized statement s :
ao[k] = expo(k) be a writer of ao and C(k) the constraints on k. Using
the set of equalities k = f(i), the proof obligation can be rewritten as
(expo(f(i)), expt(j), P (i, j) ∧ C(f(i))) with C(f(i)) the constraint with
the elements of k substituted by the corresponding elements from f(i).
The new proof obligation can be discarded when the constraint is inconsis-
tent, i.e., when none of the values referred to by ao[f(i)] is actually written
by s . Doing the propagation for each of the writers of ao, the original proof
obligation is replaced by one proof obligation for each of the writers that
actually writes some of the values referred to by ao[i].

Reduction III When both expressions are references to input arrays, i.e., of
the form (ino[f(i)], int[g(j)], P (i, j)), the proof obligation can be dismissed
as satisfied after checking that it can be proved from the given assumptions
about the correspondence between input arrays. More precisely, given the
input equivalence assumption (ino[k], int[l], C(k, l)), the integer points in
P (i, j) are a subset of those in C(k, l) under the condition: k = f(i) ∧ l =
g(j), i.e., that P (i, j) ∧ ¬C(k, l) is unsatisfiable (or that C(k, l) is entailed
by P (i, j)).

The reduction of proof obligations requires the following primitive operations
on relations (constraints): emptiness checking (consistency checking) and subset
testing (entailment or negation).

However, a naive application of the above method results in a rather ineffi-
cient procedure because: ➀ Several statements can read (the same or different)
values written by some statements, hence several proof obligations involving the
same statement can be created. ➁ Recurrences (direct or indirect) are processed
by complete loop unrolling, which is definitely not feasible in practice.

4 Control issues in the absence of recurrences

A sequence of different statements s0 , s1 , . . . , sn−1 represents a recurrence
when each statement si is a writer of an array ai[ki] and a reader of an ar-
ray ai+1[li] with dependency mapping M(ki → li), a0 and an are the same
array, and the equijoin of dependency mappings4 i.e., M(k0 → kn) = M(k0 →
k1)∧M(k1 → k2)∧. . .∧M(kn−1 → kn) is a nonempty relation. M(k0 → kn) is
called a self dependence mapping about array a0. Note that a recurrence implies
that each statement si is a writer of a value used to compute another value it
writes; in particular, for statement s0 , we have that a0[kn] is used to compute
a0[k0] for each tuple (k0, kn) in M .

4 The dependency mapping can be viewed both as a relation and as a constraint, under
the constraint view, the equijoin can be denoted as a conjunction of constraints.

6

In this section we discuss how to tackle the inefficiencies caused by multiple
reads from elements written by the same statement in the absence of recurrences.

 for (i = 1; i <= 10; ++i)
s1: b[i] = ...
 for (i = 1; i <= 10; ++i) {
 if (i > 5)
s2: a[i] = b[i];
 else
s3: a[i] = 2*b[i]; }

 for (i = 1; i <= 10; ++i)
s1: b[i] = ...
 for (i = 1; i <= 10; ++i)
s2: a[i] = ... b[i] ...;
 for (i = 1; i <= 10; ++i)
s3: c[i] = ... 2*b[i] ...;

Case I Case II

Fig. 2. Two programs illustrating the need for a good control.

Case I of Figure 2 shows a program where array b written in statement s1 is
read two times. This will give rise to two different proof obligations involving
b[i] with the same boundaries on i. One should avoid proving it twice (there can
be many steps before the input is reached).

Case II of the same figure shows a slightly different circumstance. Now, the
two proof obligations refer to different pieces of the array b, so they will be
different. However, substantial work could be saved if one could merge both
proof obligations into a single one. Indeed, then only one proof obligation need
be reduced to a condition between input arrays instead of two.

A simple way to tackle the inefficiency of Case I is by tabling all proof
obligations. A new proof obligation can be dismissed if it is implied by an already
tabled one (in the same way as a proof obligation between input arrays can be
dismissed when implied by the assumptions, see Section 3). Permanently storing
all proof obligations that occur during the verification may result in the huge
table size.

In the absence of recurrences, it is possible to define a strategy that avoids
such redundancies and keeps table size to a minimum by storing only the neces-
sary proof obligations. Our strategy is to associate a counter with each statement
s ; this counter is initialized with the number of readers of the array written by s .
Now consider a proof obligation of the form (a[f(i)], expt(j), P (i, j)) and let s0

be one of the writers of a. The Reduction II step propagating the proof obligation
across s0 is delayed until the counter associated with statement s0 is 0, i.e., until
all proof obligations originating from readers of elements of a that are written
by s0 are available (and redundant ones have been removed). After propagation,
all counters of writers of arrays bi, for which s0 is a reader, can be decreased by
1 as all proof obligations originating from the reader s0 are now available. This
works fine when s0 is a copy statement as the new proof obligation is ready for
propagation. However, when the rhs is an expression, then the proof obligation
about bi is not ready for propagation until one or more peel steps have been

7

applied. It blocks propagation across the writers of bi until it has been further
reduced by peel steps.

Our strategy implies that the propagation steps across statements are bun-
dled in a different way. Instead of propagating one proof obligation (a[i], . . .)
across all writers of a at once, all proof obligations containing a are at once
propagated across a single writer of a (when its counter is 0 and there are no
pending peel operations). The correctness of the dataflow together with the ab-
sence of recurrences ensures that the verification will never be blocked as there
will always be a zero counter.

A proof obligation with an array reference is tabled when created and remain
active until it has been propagated to all writers of that array, at which point
it can be removed. Hence the table consists of a set of active proof obligations
which is only a fraction of the total number of proof obligations that are created
during the verification.

5 Handling recurrences

Figure 1 contains two recurrences consisting of a single statement (direct recur-

rences), namely statements o2 and o4 . Also, there exists indirect recurrences in
which several statements are involved. Figure 3 shows another example with a
direct recurrence in statement s3 . Note that the program slice that computes
the value of a[7] also contains the instances of s3 for i = 5 and i = 3.

s1: a[1] = 5;
s2: a[2] = 6;
 ...
 for (i=3, i<=7, i++)
s3: a[i] = a[i-2] + 5;
 ...
s4: b[0] = a[7]

transitive closure of self dependence mapping

self dependence mapping and across-recurrence mapping

a[7]

a[7] a[6] a[5] a[4] a[3] a[2] a[1]

a[6] a[5] a[4] a[3] a[2] a[1]

Fig. 3. A piece of code with a recurrence.

The control described in Section 4 will be blocked at recurrences. Consider
the example; the counter of s3 will never reach 0 because one of the readers
of the values it writes is inside the recurrence. Simply not counting the reads
inside the recurrence when initializing the counters will avoid the deadlock but
will result in a naive algorithm that unrolls the recurrence, what results in an
unacceptable performance degradation. In our example, the recurrence is entered
when propagating a proof obligation about a[7] reaches s3 . This is then reduced
to a proof obligation about a[5] and next about a[3]. Finally, the recurrence is
exited by the proof obligation about a[1].

8

Note that the dependencies in a recurrence are always well-founded because
the program is in DSA and the data flow is correct. Hence there are always
statements that exit the recurrence when tracing the dependencies (statements
s2 and s1 in our example). As we mentioned at the beginning of Section 4, a
recurrence can be characterized by a self dependency mapping M(k0 → kn)
for some array a. If the distance between k0 and kn is the same for all tuples
(k0, kn) in M then we can use an approach that avoids completely unrolling the
recurrence (for other recurrences, we simply use the naive approach mentioned
above).

One way, sketched in [13] is to compute the positive transitive closure of
the self dependence mapping (the arrows in the top right of Figure 3) and to
use the difference between domain and range of the transitive closure relation
to compute the across-recurrence mapping. Another approach is to combine the
constant distance of the self-dependency mapping with domain information to
extend the relation containing one tuple of the self dependency mapping into a
relation covering all tuples of the mapping (the arrows in the bottom right of
Figure 3) and to extend the proof obligation in the same way. Note that one must
have a recurrence in both the original and the transformed program and that
both have to be synchronous. This makes the whole technique rather involved
and we omit further details.

6 Solvers

6.1 Requirements

As we have seen in Section 2, for simple statements, the relations of interest
can be represented by the integer points in a polytope. However, for more com-
plex statements, more complex constraints are required that involve existentially
quantified variables. These existentially quantified variables cannot be eliminated
by projection because, as we illustrated, the set of integer points in the projec-
tion of a polyhedron can be strictly larger than the set obtained by projecting
the integer points in the original polyhedron. In other words, projection can in-
troduce an overestimation; as our verification method requires exact modelling,
it is not a safe operation.

As a summary, the basic operations required by the verification method are
consistency checking (does the constraint has an integer solution) and entail-
ment. Another useful operation is convex hull. It can be used to merge several
active proof obligations into a single one, and hence to reduce the size of the
table (Section 4) and the number of reduction steps (Section 3). In fact, there
are two ways to simplify the set of active proof obligations between the same
pair of expressions:

– When the constraint part of one proof obligation is entailed by the constraint
part of another one, it can be discarded.

– When the convex hull of the constraints of two proof obligations entails their
disjunction (in other words, the convex hull is equivalent to the disjunction),

9

they can be replaced by a single proof obligation that has the convex hull as
constraint.

The example below (taken from case II in fig 2) shows an application of this
simplification.

Example 1. In the program, statement s2 gives rise to a proof obligation of the
form (a[i], exp(k), i ≥ 1∧i ≤ 5∧C(k)). A similar proof obligation (a[j], exp(l), j ≥
6∧j ≤ 10∧C(l)) is raised by statement s3 . Imposing the equalities i = j and k =
l one can derive that the convex hull is given by (i ≥ 1∧i ≤ 10∧C(k)) and that it
is equivalent to the disjunction (i ≥ 1∧i ≤ 5∧C(k))∨(i ≥ 6∧i ≤ 10∧C(k)), hence
both proof obligations can be replaced by (a[i], exp(k), i ≥ 1 ∧ i ≤ 10 ∧ C(k)).

6.2 Solvers

In simple verification tasks, all constraints correspond to polytopes (the con-
straints do not contain existential variables). However, solutions are the integer
points in these polytopes, hence, more is required than basic capabilities for
solving linear equalities and inequalities over rationals or reals.

CLP(Q) [3] is a library in SICSTUS Prolog [14] for solving linear program-
ming problems with a limited support for mixed integer linear optimization
problem. Besides the consistency check over the rational domain, it allows one
to check that there is at least one integer solution (using the bb inf opera-
tion). Using these primitive operations, one can build more complex operations
needed by our verification. As described in [2], a convex hull operation can be
constructed.

The PolyLib [8] library is a software package that is designed for manipu-
lating polyhedra. PolyLib is designed to handle polyhedral domains which refer
to the set of integer points in the union of a finite number of polyhedra. It pro-
vides functions for various operations including testing for the existence of an
integer solution and calculating convex hull. So it provides all the functionality
for handling simple verification tasks.

PPL [10] is another library, however it is oriented more towards the support
of rational convex polyhedra, and includes the ability to handle the strict in-
equalities. But the lack of support for checking the existence of integer solutions
makes it not suitable for our verification task.

When it comes to the verification of more complex problems involving existen-
tial variables, then all of the above systems are not suited. For certain kinds
of constraints there may be work-arounds that eliminate the existential vari-
ables. In particular Z-polyhedra [9] may be useful to represent certain types of
constraints with existential variables. Also PIP [6], a tool which computes the
lexicographic minimum of the integer points in a parametric polyhedron, can
sometimes be helpful in eliminating certain existential variables [17]. However,
not all existential variables can be eliminated. In such case we need a solver
that supports general Presburger formulae that contains existentially quantified
variables.

10

The Omega library [11] is designed specifically for handling full Presburger
formulae. It is based on an extension of the Fourier-Motzkin method called
Omega test. It also provides the other operations required by our application,
such as entailment, convex hull, and even simplification that replaces a disjunc-
tion with its convex hull when they are equivalent. It also provides a transitive
closure operation [7].

Presburger formulae have a super-exponential time complexity. Hence Omega
necessarily employs various heuristics. Sometimes, these heuristics may fail. Then
the calculation either continues running without returning a solution in a rea-
sonable time or simply gives an UNKNOWN result, as reported in Section 5.2.1
of [16]. That is likely inherent to any solver for the general class of Presburger
formulae. Moreover, as reported by [16], the implementation of Omega has other
problems that may cause it to abort the calculation with an error message, or
in very rare cases even produce incorrect results.

7 Conclusion

In this paper we analyzed a verification task for embedded software that was
previously sketched in [13]. We described in more detail the basic operations of
the verification process. We also analysed the functionality a solver has to offer
to be useable in this application. For simple verification tasks, where existential
variables do not appear, or can be eliminated by simple work-arounds, various
solvers that can handle polyhedra can be applied. However, for more complex
verification tasks, only Omega[11] offers all the needed functionality, though
there are no guarantees that it will never fail.

Acknowledgement

We are grateful to Peter Vanbroekhoven and Sven Verdoolaege for the many
discussions and useful comments.

References

1. D. Barthou, P. Feautrier, and X. Redon. On the equivalence of two systems of
affine recurrence equations. Technical Report Report RR-4285, INRIA, Oct. 2001.

2. F. Benoy, A. King, and F. Mesnard. Computing Convex Hulls with a Linear Solver.
Theory and Practice of Logic Programming, 5:259–271, 2005.

3. H. C. OFAI CLP(Q,R) manual, edition 1.3.3. Technical Report TR-95-09, Austrian
Research Institute for Artificial Intelligence, Vienna, 1995.

4. F. Catthoor, S. Wuytack, E. de Greef, F. Balasa, L. Nachtergaele, and A. Van-
decappelle. Custom Memory Management Methodology Exploration of Memory

Organisation for Embedded Multimedia System Design. Kluwer Academic Publish-
ers, 1998.

5. P. Feautrier. Dataflow analysis of array and scalar references. International Journal

of Parallel Programming, 20(1):23–53, 1991.

11

6. P. Feautrier. Parametric integer programming. RAIRO Recherche Opérationnelle,
Sep 1998.

7. W. Kelly, W. Pugh, E. Rosser, and T. Shpeisman. Transitive closure of infinite
graphs and its applications. International Journal of Parallel Programming, 24(6),
1996.

8. V. Loechner. PolyLib: A library for manipulating parameterized polyhedra. Tech-
nical Report PI-785, IRISA, 1999.

9. S. P. K. Nookala and T. Risset. A Library for Z-polyhedral Operations. Technical
Report PI-1330, IRISA, Mai 2000.

10. PPL. http://www.cs.unipr.it/ppl/.
11. W. Pugh. The Omega Test: a fast and practical integer programming algorithm

for dependence analysis. Comm. of the ACM, Aug 1992.
12. F. Quilleré and S. Rajopadhye. Optimizing memory usage in the polyhedral model.

ACM Trans. Prog. Lang. Syst., 22(5):773–815, Sep 2000.
13. K. C. Shashidhar, M. Bruynooghe, F. Catthoor, and G. Janssens. Verification

of source code transformations by program equivalence checking. In Compiler

Construction, 14th International Conference, CC 2005, Proceedings, volume 3443
of LNCS, pages 221–236. Springer, 2005.

14. SICSTUS. http://www.sics.se/isl/sicstus.html.
15. P. Vanbroekhoven, G. Janssens, M. Bruynooghe, and F. Catthoor. Transformation

to dynamic single assignment using a simple data flow analysis. In Proceedings of

The Third Asian Symposium on Programming Languages and Systems, Tsukuba,

Japan, 2005.
16. S. Verdoolaege. Incremental loop transformations and enumeration of parametric

sets. PhD thesis, Department of Computer Science, Katholieke Universiteit Leuven,
2005.

17. S. Verdoolaege, K. Beyls, M. Bruynooghe, and F. Catthoor. Experiences with
enumeration of integer projections of parametric polytopes. In Compiler Con-

struction, 14th International Conference, CC 2005, Proceedings, volume 3443 of
LNCS. Springer, 2005.

12

Confinement Analysis with Graph Reachabilty

Constraints

Fred Spiessens1,2, Luis Quesada2, and Peter Van Roy2

1 Cork Constraint Computation Centre, Cork, Ireland
2 Université catholique de Louvain, Louvain-la-Neuve, Belgium

Abstract. In security analysis, the problem of confinement is to find
ways to prevent some entities in a system to get direct access to each
other, or in the generalized form, to have a certain type of (direct or
indirect) influence on each other. In this paper we propose the use of
a constraint propagator for reachability in directed graphs, DomReach-
ability [QVDC06], to help solve such confinement problems. We give
examples of how the propagator can be applied, and we show that it
can improve scalability, in comparison with a constraint based tool for
generalized security analysis [SJV05].

1 Introduction

In software security, the execution of some actions is controlled (allowed or disal-
lowed), in an attempt to restrict their (direct or indirect) effects. Allowed actions
are called permissions. The parts of a program that can have permissions are
called subjects. The ability of a subject to directly or indirectly induce an effect
is the subject’s authority.

Safety properties indicate authority that is illegal and should be prevented. A
program breaks a safety property if the illegal effect cannot be prevented. When
analyzing if a program can break a safety property, the following are important:

1. What permissions are initially available to the subjects.
2. How do the subjects use their permissions to generate effects.

It was shown in [HRU76] that these problems are not computable in general.
Therefore, security analysis has to approximate the problem from the safe side,
by looking for proof that the safety property remains unbroken. If no such proof
can be found, the problem is assumed to be unsafe. We safely approximate a
program using a monotonic approach that considers only the authority enhancing
parts of the actions.

In the approximative models we will also consider requirements that express
that certain authority should not be prevented, which we will call liveness possi-
bilities, to distinguish them from the stronger liveness properties which express
guarantees that cannot be made when using safe approximations.

In this paper, we show that graph reachability constraints have useful appli-
cations in safety analysis and enforcement. We do not claim that this approach
is appropriate, useful, or feasible in all circumstances.

Section 2 explains how authority can be expressed using graphs. In section
3 we introduce the reachability constraint propagator. The rest of the paper de-
scribes the use of this constraint for safety analysis. Section 4 demonstrates how
to calculate the strategic inter-positioning of controllable subjects in a network
of interacting entities. Section 5 explains restricted behavior can be expressed
using subgraphs and additional constraints.

Section 5 presents two extensions of the the reachability propagator, and
discusses their additional expressive power. We extend the safety analysis to
networks of interconnected systems in Section 7, and discuss the scalability of
the graph based approach in comparison with the “Scollar” tool [SJV05]. We
then present future work, that will combine the strength of both approaches.

2 Expressing Authority in a Directed Graph

The nodes of our digraphs represent subjects, and, instead of representing per-
missions, the arcs represent the direct authority attainable by using permissions.
That way, the reachable authority corresponds to the graph’s transitive closure.

Permission Graph Direct Authority Graph

Fig. 1. From Permission Graphs to Direct Authority Graphs

For example, figure 1 shows how we can derive an authority digraph from
a permission digraph that contains read and write permissions. Read and write
permissions provide the same direct authority: data-transmission, be it in oppo-
site directions. Therefore we can present both kinds of permissions in a single
authority digraph.

3 The DomReachability Constraint

Before presenting the constraint, we introduce a set of concepts on which its
definition relies. These concepts are explained in more detail in [QVDC06].

3.1 Extended dominator graph

Given a flow graph fg and its corresponding source s, a node i is a dominator
of another node j if all paths from s to j in fg contain i (See [LT79,SGL97]).

Formally :

i ∈ Dominators(fg, j) ⇔ i 6= j ∧ ∀p ∈ Paths(fg, s, j) : i ∈ Nodes(p) (1)

where

p ∈ Paths(fg, i, j) ⇔

p is a subgraph of fg

Nodes(p) = {k1, . . . , kn} ∧ k1 = i ∧ kn = j

Edges(p) = {〈kt, kt+1〉 | 1 ≤ t < n}
(2)

Note that the nodes unreachable from s are dominated by all the other nodes.
However, the nodes reachable from s always have an immediate dominator, which
is defined as :

i = ImDominator(fg, j) ⇔
{

i ∈ Dominators(fg, j)
¬∃k ∈ Nodes(fg) : i ∈ Dominators(fg, k) ∧ k ∈ Dominators(fg, j)

(3)
This property allows to represent the whole dominance relation as a tree, where
the parent of a node is its immediate dominator.

Let us now consider the extended graph of fg, Ext(fg), which is obtained
by replacing the edges by new nodes, and connecting the new nodes accordingly.
This graph can be formally defined as follows:

〈N ′, E′, s′〉 = Ext(〈N, E, s〉) ⇔

s′ = s

N ′ = N ∪ E

e = 〈i, j〉 ∈ E ⇔ 〈i, e〉 ∈ E′ ∧ 〈e, j〉 ∈ E′

(4)
We call the dominator tree a flow graph’s extended graph its extended dom-

inator tree. Figures 2, 3 and 4 show an example of a flow graph, its extended
graph, and its extended dominator tree, respectively. The extended dominator
tree has two types of nodes: nodes corresponding to nodes in the original graph
(node dominators), and nodes corresponding to edges in the original graph (edge
dominators). The latter nodes are drawn in squares.

3.2 The DomReachability constraint

The DomReachability constraint is a constraint on three graphs:

DomReachability(fg, edg, tcg) (5)

where

– fg is a flow graph, i.e., a directed graph with a source node, whose set of
nodes is a subset of N ;

– edg is the extended dominator graph of fg; and
– tcg is the transitive closure of fg, i.e,

〈i, j〉 ∈ Edges(tcg) ⇔ 〈i, j〉 ∈ Edges(TC(fg))
〈i, j〉 ∈ Edges(TC(g)) ⇔ ∃p : p ∈ Paths(g, i, j)

(6)

Fig. 2. Flow graph Fig. 3. Extended flow
graph

Fig. 4. Extended domina-
tor tree

3.3 Expressing security constraints with DomReachability

Our security problems have two concerns:

1. some authority should not be reachable (safety properties)
2. other authority should be reachable (liveness possibilities)

Both concerns can be expressed in the The Bounded Transitive Closure Prob-
lem (BTC): given the directed graphs gmin, gmax, tcgmin and tcgmax, find a
directed graph g such that 3:

gmin ⊆ g ⊆ gmax

and
tcgmin ⊆ TC(g) ⊆ tcgmax

(7)

The set of liveness possibilities will be tcgmin, tcgmax will be the complement
of the set of safety properties, and gmin and gmax will just be suitable bounds
for the safe configuration of permissions we are looking for.

The BTC instance can be directly modeled in terms of DomReachability:
gmin, gmax, tcgmin and tcgmax are the bounds of fg and tcg.

Remark : BTC problems are NP-complete. That was recently shown in [Que06],
by reducing the The Disjoint Paths Problem [GJ79] to BTC.

3 There is no relation among gmin, gmax, tcgmin and tcgmax. In particular, it is true
neither that tcgmin is the transitive closure of gmin nor that tcgmax is the transitive
closure of gmax

4 Confinement by Interposition

Suppose we have a set of previously unconnected, uncontrollable components,
and we want to find out how we can connect them, using controllable compo-
nents, to allow them to perform their collaborative tasks, but also prevent them
from breaking a given security policy. The tools we have to solve this problem
are:

– a set of controllable components (subjects) to be strategically inter-positioned
between the uncontrolled components.

– a set of permissions to be granted to the controllable components.

The assignment is: find a configuration (graph) with a minimal number of
controllable nodes (not exceeding a fixed practical upper limit), that guarantees
the requirements for possible liveness (the uncontrolled components get enough
authority) as well as the requirements for safety (the uncontrolled components
do not get too much authority).

4.1 Practical Example

We take a well known example, expressing a simple Multi-Level Security Problem
(MLS) [BL74]. Two external subjects Bond and Q, with respective clearances
Top Secret and Confidential, have to be given access to two external storage
devices, one for Top Secret content, and one for Confidential content.

We have to construct the content of a black box in (e.g. Figure 5), with a
minimal number of components. Since the uncontrollable components cannot be
restricted, their connection to the box is bi-directional. Even the devices are not
trusted to be passive containers, they are unknown components and could be of
any type.

Fig. 5. The ∗-property black box

The security policy we want to enforce between these four entities is simply
to make sure that no Top Secret information leaks (down) to the Confidential
level. Therefore we will enforce the ∗-property (star-property) that states: agents
should be able write to all levels above (and including) their own level of con-
fidentiality, and read from all levels below (and including) their own level of

confidentiality, but no agent should be able to write strictly below his confiden-
tiality level, or read strictly above his confidentiality level. This is a policy that
specifies both liveness requirements and safety requirements, so we will express
it as suggested in section 3.

Expressing the problem in terms of DomReachability The BTC for the
instance of the problem presented above is:

gmin = ∅
gmax = {〈x, y〉|x, y ∈ {b, q, t, c} ∪ {o1, o2, ..., omax}}

tcgmin = {〈b, t〉, 〈t, b〉, 〈q, c〉, 〈c, q〉, 〈c, b〉, 〈q, t〉}
tcgmax = gmax − {〈b, q〉〈b, c〉〈t, q〉〈t, c〉}

(8)

In the problem, b stands for Bond, q for Q, t for the top-secret device, and c

for the confidential device. The controllable nodes are o1, o2,...,omax.

Apart from the BTC constraints, we have to express the fact that b, q, t, and
c are uncontrolled, by making sure that all their connections are bi-directional.
We therefore added the necessary implication constraints to the problem:

∀0 ≤ x ≤ max, i ∈ {b, q, t, c} : 〈i, ox〉 ∈ g ⇔ 〈ox, i〉 ∈ g (9)

To minimize the number of controlled components, we can start with zero
controlled nodes, and iteratively add one more, until we find a solution.

We also experimented with a labeling strategy that tends to find the solution
with the least nodes first. By first trying to remove all possible edges from the
controlled node that reaches the most nodes, the strategy tends to minimize
both the number of edges and the number of controlled nodes, although there
are cases where the number of controlled nodes used is not the smallest one
possible.

The pruning performed by DomReachability, and the aforementioned labeling
strategy provided the solution in Figure 6, in 40ms.

Fig. 6. A solution with the minimal number of controllable components

5 Confinement by Restricted Behavior

In the previous section we relied on the ability of the system to enforce the per-
missions. There could for instance have been a reference monitor that checked
the permissions before they were exerted. Alternatively, the internal subjects
could be trusted parts of the system: trusted to behave exactly as allowed by
their permissions. Capability systems [DH65] rely on such subjects (called capa-
bilities).

We could as well rely on our home-brewn trusted subjects to behave in
“smarter” ways than simply using or not using certain permissions. We can
program them to use their permissions in a way that would allow the desired
effects and prevent the other ones. This allows for much more accurate analysis
of the reachable authority in a system. An account of the different ways in which
the boundaries of authority can be calculated is given in chapter 8 of [Mil06].

Suppose we want to express the behavior of a subject that only passes infor-
mation if:

– other subjects wrote that information to it (it did not read the information
itself from other subjects), and

– it writes that information itself to other subjects (it does not reveal that
information to its own readers)

Fig. 7. Data Forwarder (dataflow diode)

Such a subject acts as a forward diode for data flow, depicted in figure 7. The
full arcs denote the access rights and the dashed arcs represent the corresponding
flow of data. The data-flow is only transitive in one direction: from A to B, as
indicated by the dotted arcs. The behavior of the diode in the middle prevents
data to pass in the three other directions.

We can express similar restricted behavior in a subgraph with four nodes:
two in− ports and two out− ports, one of each kind for reading, and the other
one for writing. All external arcs will be connected to one of the four ports: the
incoming flow to the in-ports, the outgoing flow to the out-ports, the flow via
read permissions to the read-ports, and the flow via write permissions to the
write-ports. These restrictions can directly be expressed in BTC, by removing
the illegal external connections from gmax.

behavior graph simplified graph behavior
unrestricted behavior

hides its writers data from
its readers

data forwarder of figure 7

non-tranparent subject

Fig. 8. Subgraphs for behavior-based internal dataflow

Figure 8 shows some behavior subgraphs with four internal ports. The inter-
nal arcs connect an in-port (left) to an out-port (right), as they relate incoming
data to outgoing data. They correspond to the dotted arcs in figure 7.

These subgraphs replace the monolithic subject nodes in the data-flow graph.
Depending on which of the four possible arcs are present, the behavior-graph
can be simplified by collapsing two ports into one when the effect of connecting
to/from either of them is the same (second column of figure 8).

6 Extending BTC for additional expressive power

In the previous sections we had to use additional constraints to express the
security problems. We now propose two extensions to the BTC problem that in-
corporate the implication constraints that allow us to express interesting security
problems.

6.1 The Conditional BTC Problem (CondBTC)

In section 4.1 we had to use extra constraints for all four uncontrolled com-
ponents, to express that they should take only bidirectional connections. This
means, if an edge 〈A, B〉 is in the graph, then so should 〈B, A〉. We can express
this condition as an edge from 〈A, B〉 to 〈B, A〉 in a graph whose nodes are
edges in other graphs and whose edges represent implications. This allows us
to express inter-graph conditions on edges. If we consider also the complements
of the graphs, (the complement of graph g is denoted as (g)′), we can express
negations as well as implications.

Therefore we add a directed graph condg such that:

G1, G2 ∈ {g, (g)′, TC(g), (TC(g))′}

〈eG1

1 , eG2

2 〉 ∈ condg ⇔ (e1 ∈ G1 ⇒ e2 ∈ G2)
(10)

The security problems in sections 4 and 5 are direct applications of CondBTC.
The implications involving edges of the solution graph and its transitive closure
can be directly represented in terms of condg.

Fig. 9. A fraction of the condg for the problem in section 4.1

Figure 9 shows a bi-directional connection constraint as 2 edges in condg.

6.2 The Cardinal BTC Problem (CardBTC)

Instead of representing edges in another graph, let the nodes in condg now
represent mixed sets of edges from any of the DomReachability graphs. An edge
〈A, B〉 in condg now represents a composite condition: if all edges in the set A

are present, then so should at least one edge in the set B.
The extended definition of condg allows us to simplify the definition of the

problem. The BTC graphs gmin, gmax, tcgmin and tcgmax can be defined in with
condg, transitive closure, and graph complement as follows:

∀e ∈ gmin : 〈∅, {eg}〉 ∈ condg

∀e 6∈ gmax : 〈∅, {e(g)′}〉 ∈ condg

∀e ∈ tcgmin : 〈∅, {eTC(g)}〉 ∈ condg

∀e 6∈ tcgmax : 〈∅, {e(TC(g))′}〉 ∈ condg

(11)

Notice that the number of nodes of condg is O(|N |2 + |conds|), where N is
the set of nodes on which gmin, gmax, tcgmin and tcgmax are defined, and conds

is the set of conditional constraints. This is because each graph has at most |N |2

edges, and there are two nodes per conditional constraint. The number of edges
is O(|N |2 + |conds|) too since there is one edge in condg per edge in gmin, gmax,
tcgmin and tcgmax, and one edge per conditional constraint.

The expressivity of CardBTC can be further extended by labeling edges with
constraints on the cardinality of the target set. For instance, figure 10 graphically
shows the following constraint in extended Higraph notation [Har95] :

b1, b2, b3 ∈ {0, 1}
b1 = 1 ⇔ 〈b, c〉 ∈ TC(g)
b2 = 1 ⇔ 〈b, f〉 ∈ TC(g)
b3 = 1 ⇔ 〈b, e〉 ∈ TC(g)
〈a, b〉 ∈ TC(g) ⇒ b1 + b2 + b3 > 1

(12)

Fig. 10. A graphical presentation of a CardBTC constraint

We can say that, when the label of the edge is omitted, the implicit constraint
is “> 0”, i.e., at least one of the constraints in the set must be true.

The cardinality constraints involved in CardBTC can be managed by using
standard approaches based on cardinality propagators [VD91]. However, we can
reason at a higher level of abstraction by looking at the Boolean Satisfiability
instance that results from associating each basic graph constraint with literals.
This level of abstraction would let us take advantage of BDD propagators to
narrow down the literals composing a given disjunction [HLS05]. We could also
consider hybrid approaches, like the one suggested in [HS06], in order to inherit
the advantages offered by SAT solvers.

6.3 Applying CardBTC for practical Security Problems

CardBTC allows us to express complex conditions on the propagation of author-
ity in several ways we did not yet explore:

– It can be used to express more complex ways of authority propagation than
transitive closure.

– It can be used to represent fine-grained conditional behavior of trusted sub-
jects, without the need to represent every subject as a complex subgraph.

7 Secure Interoperation

In this section we present a security problem for which the scalability of the
approach using DomReachability considerably exceeds that of Scollar [SJV05],
a more general constraint-based tool for security analysis.

A system of interacting subjects can be secure, but when two or more secure
systems become interconnected, the result may again introduce safety breaches.
A secure reconfiguration removes a set of permissions, to make sure that no au-
thority that was unreachable in any single system (and may have been forbidden
by that systems policy), becomes reachable by the interconnection.

The use of constraint programming to find secure reconfigurations of inter-
operating systems, is proposed in [BFO05], for systems that are interconnected
via shared subjects. The safety properties to be imposed on the interconnected
systems, are the ones that hold in the individual systems. Optionally, additional
safety and liveness requirements can then be added in the interconnected system.

Following this approach, we show how to use DomReachability, to find a
minimal secure reconfiguration for a set of interconnected systems. A secure re-
configuration is a set of permissions such that, when each of these permissions
are revoked in all systems that granted the permission before the interoperation,
the interconnection will make no additional effects reachable between two sub-
jects of the same system. This approach can then easily be extended to include
additional constraints on the reachability of effects in the interconnected system.

7.1 Calculating Secure Reconfigurations with Scollar

The constraint based tool “Scollar”, written in Mozart-Oz [VH04,Sch02], an-
alyzes safety in configurations of permission-restricted and behavior-restricted
subjects, and calculates the minimal (additional) restrictions that are necessary
to guarantee the safety requirements.

Scollar was recently extended to compute safe reconfigurations for interoper-
ating systems as well. To analyze secure interoperation, the tool first computes
the transitive closures of every individual system, derives from these transi-
tive closures the safety requirements for the global, interconnected system, and
then calculates a minimal reconfiguration, that removes some initial permissions
(and/or behavior of the trusted subjects, when specified)

Since Scollar’s primarily aim is to analyze small patterns of interacting sub-
jects with relatively complex behavior, its scalability in terms of number of sub-
jects was not an initial concern. For secure interoperation, the problems tend
to be larger in number of subjects, and marginally lower in complexity of the
subject behavior. Recent experiments with the current implementation revealed
that the practical limit allows no more than approximately 100 subjects in the
interconnected system, even when the behavior complexity is reduced to sim-
ple on-off (active/passive), no propagation of permissions is modeled, and the
mechanisms for effect propagation are reduced to simple transitive closure.

7.2 Comparing Scalability

We conducted a very preliminary set of experiments to get a rough idea of the
relative scalability of DomReachability in comparison to Scollar.

We can expect that the DomReachability approach will perform best when
the rules that model the propagation of authority are similar to reachability by
transitive closure. At the same time we wanted to test the practical feasibility
of modeling simple restrictive behavior as subgraphs.

We decided to run a very preliminary and small set of experiments with the
following setup:

– N systems are inter-connected in a network that has a small-world topology,
generated following the Watts-Strogaz approach [WS98] from a structured
undirected graph in which every system (node) has 4 neighbors. A small
world graph is a graph with a high clustering coefficient (of every system,
most neighboring systems are connected) and a low characteristic path length
(mean distance in the network between any two systems).

– Systems S1 and S2 are connected ⇔ they share exactly two subjects.
– Unconnected systems have no common subjects
– Subjects are shared by at most two systems.
– Every system has exactly as many subjects as are required for its connections

to its neighbors in the network.
– Half of the subjects in every system have unrestricted behavior, the other

half are non-transparent (See Figure 8).

The same instances of the generated problems were fed to the Scollar based
solver and to the DomReachability based solver. All safety properties were pre-
calculated in Scollar, during the generation of the examples, and were not re-
calculated in the experiments.

The rules that govern data-flow in all systems were kept simple, and are
illustrated by the following Horn Clauses, used in Scollar:

readPermission(Y, X) ⇒ flow(X, Y)
flow(X, Y) ∧ flow(Y, Z) ∧ transparent(Y) ⇒ flow(X, Z)

We made the experiments as simple as was reasonably possible, by consider-
ing a single permission (read), and two kinds of subject behavior: either trans-
ferring the data that was read or not. We did not introduce extra requirements
for safety or liveness. We arranged for 50% of all subjects to be unrestricted
(allowing data to flow through them in all directions), and the other 50% to be
non-transparent (See Figure 8). The transparency of a subject was considered
to be a fixed and was not optimized. Only the read permissions were optimized
in the experiments.

All these restrictions where set up to restrict the influence of random choices
on our measurements, and improve the accuracy with which our results reflect
the influence of the size of the problem (number of systems).

All experiments where conducted on a dedicated Linux machine with 2GB
of memory and 4 processors at 3.06 GHz. Figure 11 shows the time it took to
find a first secure reconfiguration (in seconds), for networks with 8 to 52 systems
(32 to 208 subjects). We performed only one calculation for every size of the
problem. No results could be calculated in Scollar for problems of more than 24
systems (96 subjects), due to virtual memory exhaustion.

Even if only one problem instance was solved for every size, the results leave
no doubt about the winner in this scalability contest. DomReachability is much
more suited to solve problems of big size. We expect that Scollar is still more
suitable for solving complex problems of small size, to model complex rules and
subject behavior that express a refined approximation to how authority propa-
gates. It will be interesting future work to find out exactly where the borderline
for choosing between the two approaches lies, and even more interesting to see
how the approaches can be combined to get the best of both.

8 Conclusion and Future Work

We have shown how the monotonic propagation of effects can be modelled with
reachability constraints in a directed graph by associating nodes in the graph

Fig. 11. Scollar and DomReachability calculating Secure Reconfigurations

with subjects, and edges with permissions between the corresponding subjects.
We elaborated on the relation of the resulting constrained graph problem with
the Bounded Transitive Closure problem (BTC) and suggested extensions of
BTC that let us express more security requirements.

Some of the problems that we have presented can be solved in polynomial
time. For instance, if there is no constraint on neither the lower bound of the
interconnected graph of the interoperability problem nor on its transitive closure,
the BTC instance can be solved in polynomial time. Indeed, the empty graph
would be a valid solution to the problem. Even finding a maximal graph, i.e.,
a graph which is not included in another one respecting the safety properties,
is still polynomial since it is always possible to find a graph not containing a
particular edge that respects the safety properties.

The adoption of DomReachability, which is normally used in combinatorial
problems, is justified because: (a) it offers an incremental approach for computing
transitive closure, and (b) it discards invalid edges early on, since the addition
of an edge may imply that some other edges are not part of the graph.

In section 4.1 we constrained the size of the graph by using a size constraint
that takes the edges in the lower bound into account, but not the structure
of the graph. A smarter global constraint would take into account the current
boundaries of the graph and its transitive closure, to anticipate violations of the
limit. For instance, suppose that i reaches j and the shortest path p from i to
j contains x edges. Suppose also that the size of the graph is less than max.
Then if the graph contains at least the edges in gmin, max− |gmin| < |p− gmin|
implies that there is no solution since reaching j from i would imply that the
number of edges in the graph is greater than the limit(max). To detect this
kind of information, we can use an approach like the one suggested in [Sel02] for
incrementally keeping the shortest paths between each pair of nodes.

Towards a synergy of both approaches We expect DomReachability to
be most useful in collaboration with our existing Scollar tool. Scollar is most
suitable to express a system’s rules that govern the propagation of permissions
and authority, and a subject’s behavior. System rules can express realistic models
for propagation, that can take the restrictions of the behavior of the trusted
subjects into account. Subject behavior can be expressed in a way that depends
on the information that a subject has from initial conditions, and has required
during the collaboration with other subjects. Its expressive power makes Scollar
a tool that can (also) be used to study the propagation of authority in capability
systems and patterns of collaborating entities.

The restriction to monotonic approximations (that are safe but may possibly
be too crude) prevents us to directly express the revocation of authority. This is
relevant for capability systems too because, even if access permissions cannot be
revoked, it is very well possible (and easy) for a subject to revoke the authority it
used to provide to its clients, for instance by refusing to collaborate any further,
and no longer pass on any data or capabilities to them.

This is where the dominator part of DomReachability can be of direct use:
to add expressive power to the safety requirements. Instead of simply stating
that some effect (authority) should be prevented, we could instead require that
all authority of a certain kind should only ever be available via a trusted subject
that is able to revoke the authority. In the “authority-flow” graph (to be derived
from the access-graph) a trusted subject Alice can revoke all Bob’s authority
over a third subject Carol, if Alice dominates Bob in the authority-flow graph
that originates with Carol.

Acknowledgments

Part of the work presented here was funded by Science Foundation Ireland.
The experiments were performed on planet-lab computers of the Université
catholique de Louvain, funded by the EVERGROW project of the European
Union ”Complex Systems” Proactive initiative - 6th Framework Programme.

Part of the results in section 7 were extracted from joint work with Barry
O’Sullivan, Simon Foley, and Stefano Bistarelli. The authors are grateful to
Grégoire Dooms for many insightful discussions on the BTC problem.

References

[BFO05] Stefano Bistarelli, Simon N. Foley, and Barry O’Sullivan. Reasoning about
secure interoperation using soft constraints. In Workshop on Formal Aspects
in Security and Trust (FAST), volume 173 of FIP International Federation
for Information Processing. Kluwer, August 2005.

[BL74] D.E. Bell and L. LaPadula. Secure computer systems. In ESD-TR, pages
83–278. Mitre Corporation, 1974.

[DH65] J. B. Dennis and E. C. Van Horn. Programming semantics for multipro-
grammed computations. Technical Report MIT/LCS/TR-23, M.I.T. Labo-
ratory for Computer Science, 1965.

[GJ79] Michael Garey and David Johnson. Computers and Intractability: A Guide
to the The Theory of NP-Completeness. W. H. Freeman and Company,
1979.

[Har95] David Harel. On visual formalisms. In Janice Glasgow, N. Hari Narayanan,
and B. Chandrasekaran, editors, Diagrammatic Reasoning, pages 235–271.
The MIT Press, Cambridge, Massachusetts, 1995.

[HLS05] P.J. Hawkins, V. Lagoon, and P.J. Stuckey. Solving set constraint satis-
faction problems using robdds. Journal of Artificial Intelligence Research,
24:109–156, 2005.

[HRU76] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection
in operating systems. Commun. ACM, 19(8):461–471, 1976.

[HS06] Peter Hawkins and Peter Stuckey. A hybrid bdd and sat finite domain
constraint solver. In PADL 2006 Proceedings, volume 3819 of Lecture Notes
in Computer Science. Springer, 2006.

[LT79] T. Lengauer and R. Tarjan. A fast algorithm for finding dominators in a
flowgraph. ACM Transactions on Programming Languages and Systems,
1(1):121–141, July 1979.

[Mil06] Mark Samuel Miller. Robust Composition: Towards a Unified Approach
to Access Control and Concurrency Control. PhD thesis, Johns Hopkins
University, Baltimore, Maryland, USA, May 2006.

[Que06] Luis Quesada. The bounded transitive closure problem, 2006. Available at
http://www.info.ucl.ac.be/˜luque/papers/btc.pdf.

[QVDC06] Luis Quesada, Peter Van Roy, Yves Deville, and Raphaël Collet. Using
dominators for solving constrained path problems. In PADL 2006 Proceed-
ings, volume 3819 of Lecture Notes in Computer Science. Springer, 2006.

[Sch02] Christian Schulte. Programming Constraint Services: High-Level Program-
ming of Standard and New Constraint Services, volume 2302 of Lecture
Notes in Artificial Intelligence. Springer-Verlag, 2002.

[Sel02] Meinolf Sellmann. Reduction Techniques in Constraint Programming and
Combinatorial Optimization. Doctoral dissertation, University of Pader-
born, Paderborn, Germany, 2002.

[SGL97] Vugranam C. Sreedhar, Guang R. Gao, and Yong-Fong Lee. Incremen-
tal computation of dominator trees. ACM Transactions on Programming
Languages and Systems, 19(2):239–252, March 1997.

[SJV05] Fred Spiessens, Yves Jaradin, and Peter Van Roy. Using constraints to ana-
lyze and generate safe capability patterns. Research Report INFO-2005-11,
Département d’Ingénierie Informatique, Université catholique de Louvain,
Louvain-la-Neuve Belgium, 2005. Presented at CPSec’05. Available at
http://www.info.ucl.ac.be/∼fsp/rr2005-11.pdf.

[VD91] Pascal Van Hentenryck and Yves Deville. The cardinality operator: A
new logical connective for constraint logic programming. In Proceedings of
the Eighth International Conference on Logic Programming, pages 745–759.
MIT Press, 1991.

[VH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Com-
puter Programming. MIT Press, March 2004.

[WS98] D.J. Watts and S.H. Strogatz. Collective dynamics of ’small-world’ net-
works. Nature, 393:440–442, June 1998.

A Symbolic Intruder Model for Hash-Collision

Attacks ⋆

Yannick Chevalier and Mounira Kourjieh

IRIT Université Paul Sabatier, France
email: {ychevali,kourjieh}@irit.fr

Abstract. In the recent years, several practical methods have been pub-
lished to compute collisions on some much used hash functions. Starting
from two messages m1 and m2 these methods permit to compute m

′

1 and
m

′

2 similar to the former such that they have the same image for a given
hash function. In this paper we present a method to take into account,
at the symbolic level, that an intruder actively attacking a protocol exe-
cution may use these collision algorithms in reasonable time during the
attack. This decision procedure relies on the reduction of constraint solv-
ing for an intruder exploiting the collision properties of hash functions
to constraint solving for an intruder operating on words, that is with
an associative symbol of concatenation. The decidability of the latter is
interesting in its own right as it is the first decidability result that we
are aware of for an intruder system for which unification is infinitary,
and permits to consider in other contexts an associative concatenation
of messages instead of their pairing.

1 Introduction

Hash functions. Cryptographic hash functions play a fundamental role in mod-
ern cryptography. While related to conventional hash functions commonly used
in non-cryptographic computer applications - in both cases, larger domains are
mapped to smaller ranges - they have some additional properties. Our focus is
restricted to cryptographic hash functions (hereafter, simply hash functions),
and in particular to their use as cryptographic primitive for data integrity, au-
thentication, key agreement, e-cash and many other cryptographic schemes and
protocols. Hash functions take a message as input and produce an output re-
ferred to either as a hash-code, hash-result, or hash-value, or simply hash.

Collisions. A hash function is many-to-one, implying that the existence of col-
lisions (pairs of inputs with the identical output) is unavoidable. However, only
a few years ago, it was intractable to compute collisions on hash functions, so
they were considered to be collision-free by cryptographers, and protocols were
built upon this assumption. From the nineties on, several authors have proved
the tractability of finding pseudo-collision and collision attacks over several hash

⋆ supported by ARA-SSIA Cops and ACI JC 9005

functions. Taking this into account, we consider that cryptographic hash func-
tions have the following properties:

– the input can be of any length, the output has a fixed length, h(x) is relatively
easy to compute for any given x;

– pre-image resistance: for essentially all pre-specified outputs, it is computa-
tionally infeasible to find any input which hashes to that outputs, i.e., to
find any x such that y = h(x) when given y;

– 2nd-pre-image resistance: it is computationally infeasible to find any second
input which has the same output as any specified input, i.e., given x , to find
x′ different from x such that h(x) = h(x′);

– hash collision: it is computationally feasible to compute two distinct inputs
x and x′ which hash to the same output, i.e, h(x) = h(x′) provided that x
and x′ are created at the same time and independently one of the other.

In other words, a collision-vulnerable hash function h is one for which an intruder
can find two different messages x and x′ with the same hash value. To mount a
collision attack, an adversary would typically begin by constructing two messages
with the same hash where one message appears legitimate or innocuous while the
other serves the intruder’s purposes. For example, consider the following simple
protocol:

A→ B : M,σA(M)

where σA(M) denotes A’s digital signature on message M using DAS digital
signature scheme in which only the hash-value of M by a function h is considered.
The following attack:

A→ B : M ′, σA(M)

can be launched successfully if the intruder first computes two different messages
M and M ′ having the same hash value and then can lead Alice into executing
the protocol with message M .

Collisions in practise. MD5 Hash function is one of the most widely used crypto-
graphic hash functions nowadays. It was designed in 1992 as an improvement on
MD4, and its security was widely studied since then by several authors. The first
result was a pseudo-collision for MD5 [6]. When permitting to change the initial-
isation vector, another attack (free-start collision) has been found [8]. Recently,
a real collision involving two 1024-bits messages was found with the standard
value [19]. This first weakness was extended into a differential-like attack [22]
and tools were developed [10, 9] for finding the collisions which work for any ini-
tialisation value and which are quicker than methods presented in [19]. Finally,
other methods have been developed for finding new MD5 collisions [23, 17]. The
development of collision-finding algorithms is not restricted to MD5 hash func-
tion. Several methods for MD4 research attack have been developed [20, 7]. In
[20] a method to search RIPE-MD collision attacks was also developed, and in
[2], a collision on SHA-0 has been presented. Finally, Wang et al. have developed
in [21] another method to search for collisions for the SHA-1 hash function.

Goal of this paper. This development of methods at the cryptographic level to
built collisions in a reasonable time have until now not been taken into account
in a symbolic model of cryptographic protocols. We also note that the inherent
complexity of these attacks make them not representable in any computational
model that we are aware of. In this paper we propose a decision procedure to
decide insecurity of cryptographic protocols when a hash function for which
collisions may be found is employed. Relying on the result [3] we do not consider
here other cryptographic primitives such as public key encryption, signature or
symmetric key encryption, and assume that a protocol execution has already
been split into the views of the different equational theories. The decidability
proof presented here heavily relies on a recent result [4] that permits to reduce
constraint solving problems with respect to a given intruder to constraint solving
problems for a simpler one. This result relies on a new notion of mode. This
notion aims at exhibiting a modular structure in an equational theory but has
no simple intuitive meaning. In the case of an exponential operator as treated
in [4] the separation was between an exponential symbol and the abelian group
operations on its exponents, whereas here the separation is introduced between
the application of the hash function and the functions employed by the intruder
to find collisions.

Outline. We first give in Section 2 the definitions relating to terms and equa-
tional theories. We then present in Section 3 our model of an attacker against a
protocol, and how we reduce the search for flaws to reachability problems with
respect to an intruder theory. In Section 4 we describe in detail how we model
the fact that an intruder may construct colliding messages, and how this intruder
theory can be decomposed into simpler intruder theories. We give proof sketch
of these reductions in Section 5 and conclude in Section 6.

2 Formal setting

2.1 Basic notions

We consider an infinite set of free constants C and an infinite set of variables
X . For any signature G (i.e. sets of function symbols not in C with arities) we
denote T(G) (resp. T(G,X)) the set of terms over G ∪C (resp. G ∪C ∪ X). The
former is called the set of ground terms over G, while the latter is simply called
the set of terms over G. The arity of a function symbol f is denoted by ar(f).
Variables are denoted by x, y, terms are denoted by s, t, u, v, and finite sets of
terms are written E,F, ..., and decorations thereof, respectively. We abbreviate
E ∪ F by E,F , the union E ∪ {t} by E, t and E \ {t} by E \ t.

Given a signature G, a constant is either a free constant or a function symbol
of arity 0 in G. We define the set of atoms Atoms to be the union of X and the set
of constants. Given a term t we denote by Var(t) the set of variables occurring
in t and by Cons(t) the set of constants occurring in t. We denote by Atoms(t)
the set Var(t) ∪ Cons(t). A substitution σ is an involutive mapping from X to
T(G,X) such that Supp(σ) = {x|σ(x) 6= x}, the support of σ, is a finite set. The

application of a substitution σ to a term t (resp. a set of terms E) is denoted tσ
(resp. Eσ) and is equal to the term t (resp. E) where all variables x have been
replaced by the term σ(x). A substitution σ is ground w.r.t. G if the image of
Supp(σ) is included in T(G).

An equational presentation H = (G, A) is defined by a set A of equations
u = v with u, v ∈ T(G,X) and u, v without free constants. For any equational
presentation H the relation =H denotes the equational theory generated by
(G, A) on T(G,X), that is the smallest congruence containing all instances of
axioms of A. Abusively we shall not distinguish between an equational presenta-
tion H over a signature G and a set A of equations presenting it and we denote
both by H. We will also often refer to H as an equational theory (meaning the
equational theory presented by H). An equational theory H is said to be con-
sistent if two free constants are not equal modulo H or, equivalently, if it has a
model with more than one element modulo H.

For all signature G that we consider, we assume that <G is a total simplifi-
cation ordering on T(G) for which the minimal element is a free constant cmin.
Unfailing completion permits, given an equational theory H defined by a set A
of equations, to build from A a (possibly infinite) set R(A) of equations l = r
such that the ordered rewriting relation between terms defined by t→R(A) t′ if:

– There exists l = r ∈ R(A) and a ground substitution σ such that lσ = s and
rσ = s′, t = t[s] and t′ = t[s← s′];

– We have t′ <G t.

This ordered rewriting relation is convergent, that is for all terms t, all ordered
rewriting sequences starting from t are finite, and they all have the same limit,
called the normal form of t. We denote this term (t)↓R(A), or (t)↓ when the
equational theory considered is clear from the context. In the sequel we denote
Cspe the set consisting of cmin and of all symbols in G of arity 0.

The syntactic subterms of a term t are denoted Subsyn(t) and are defined
recursively as follows. If t is an atom then Subsyn(t) = {t}. If t = f(t1, . . . , tn)
then Subsyn(t) = {t} ∪

⋃n

i=1 Subsyn(ti). The positions in a term t are sequences
of integers defined recursively as follows, ε being the empty sequence. The term
t is at position ε in t. We also say that ε is the root position. We write p ≤ q to
denote that the position p is a prefix of position q. If u is a syntactic subterm
of t at position p and if u = f(u1, . . . , un) then ui is at position p · i in t for
i ∈ {1, . . . , n}. We write t|p the subterm of t at position p. We denote t[s] a term
t that admits s as syntactic subterm. We denote by top() the function that
associates to each term t its root symbol.

2.2 Mode in an equational theory

We recall here the notion of mode on a signature, which is defined in [4]. Assume
H is an equational theory over a signature G, and let G0 be a subset of G. Assume
also that the set of variables is partitioned into two sets X0 and X1. We first define

a signature function Sign() on G ∪Atoms in the following way:

Sign() : G ∪Atoms→ {0, 1, 2}

Sign(f) =

0 if f ∈ G0 ∪ X0

1 if f ∈ (G \ G0) ∪ X1

2 otherwise, i.e. when f is a free constant

The function Sign() is extended to terms by taking Sign(t)= Sign(top(t)).

We also assume that there exists a mode function m(·, ·) such that m(f, i) is
defined for every symbol f ∈ G and every integer i such that 1 ≤ i ≤ ar(f). For
all valid f, i we have m(f, i) ∈ {0, 1} and m(f, i) ≤ Sign(f). Thus for all f ∈ G0

and for all i we have m(f, i) = 0.

Well-moded equational theories. A position different from ε in a term t is
well-moded if it can be written p · i (where p is a position and i a nonnegative
integer) such that Sign(t|p·i) = m(top(t|p), i). In other words the position in
a term is well-moded if the subterm at that position is of the expected type
w.r.t. the function symbol immediately above it. A term is well-moded if all its
non root positions are well-moded. Note in particular that a well-moded term
does not contain free constants. If a position of t is not well-moded we say it
is ill-moded in t. A term is pure if its only ill-moded subterms are atoms. An
equational presentation H = (G, A) is well-moded if for all equations u = v in A
the terms u and v are well-moded and Sign(u)=Sign(v). One can prove that if
an equational theory is well-moded then its completion is also well-moded [4].

Note that if H is the union of two equational theories H0 and H1 over two
disjoint signatures G0 and G1, the theory H is well-moded when assigning mode
i to each argument of each operator g ∈ Gi, for i ∈ {0, 1}.

Subterm values. The notion of mode also permits to define a new subterm
relation in T(G,X).

We call a subterm value of a term t a syntactic subterm of t that is either
atomic or occurs at an ill-moded position of t1. We denote Sub(t) the set of sub-
term values of t. By extension, for a set of terms E, the set Sub(E) is defined as
the union of the subterm values of the elements of E. The subset of the maximal
and strict subterm values of a term t plays an important role in the sequel. We
call these subterm values the factors of t, and denote this set Factors(t).

Example 1. Consider two binary symbols f and g with Sign(f) = Sign(g) =
m(f, 1) = m(g, 1) = 1 and m(f, 2) = m(g, 2) = 0, and t = f(f(g(a, b), f(c, c)), d).
Its subterm values are a, b, f(c, c), c, d, and its factors are a, b, f(c, c) and d.

In the rest of this paper and unless otherwise indicated, the notion of subterm
will refer to subterm values.

1 Note that the root position of a term is always ill-moded.

Unification systems. We review here properties of well-moded theories with
respect to unification that are addressed in [4].

Assume H is a well-moded equational theory over a signature G, and let H0

be its projection over the signature G0 of symbols of signature 0. Let us first
define unification systems with ordering constraints.

Definition 1. (Unification systems) Let H be a set of equational axioms on
T(G,X). An H-unification system S is a finite set of couples of terms in T(G,X)

denoted by {ui
?
= vi}i∈{1,...,n}. It is satisfied by a ground substitution σ, and we

note σ |= HS, if for all i ∈ {1, . . . , n} we have uiσ =H viσ.

We will consider only satisfiability of unification systems with ordering con-
straints. That is, we consider the following decision problem:

Ordered Unifiability

Input: A H-unification system S and an ordering ≺ on the variables X
and constants C of S.

Output: Sat iff there exists a substitution σ such that σ |=H S and for
all x ∈ X and c ∈ C, x ≺ c implies c /∈ Subsyn(xσ)

3 Analysis of reachability properties of cryptographic

protocols

We recall in this section the definitions of [3] concerning our model of an intruder
attacking actively a protocol, and of the simultaneous constraint satisfaction
problems employed to model a finite execution of a protocol.

3.1 Intruder deduction systems

We first recall here the general definition of intruder systems, as is given in [3].
We then recall the definition of a well-moded intruder that we will use in this
paper. In the context of a security protocol (see e.g. [12] for a brief overview), we
model messages as ground terms and intruder deduction rules as rewrite rules
on sets of messages representing the knowledge of an intruder. The intruder
derives new messages from a given (finite) set of messages by applying intruder
rules. Since we assume some equational axioms H are satisfied by the function
symbols in the signature, all these derivations have to be considered modulo the
equational congruence =H generated by these axioms. In our setting an intruder
deduction rule is specified by a term t in some signature G. Given values for the
variables of t the intruder is able to generate the corresponding instance of t.

Definition 2. An intruder system I is given by a triple 〈G,S,H〉 where G is a
signature, S ⊆ T(G,X) and H is a set of equations between terms in T(G,X).
To each t ∈ S we associate a deduction rule Lt : Var(t) → t and Lt,g denotes
the set of ground instances of the rule Lt modulo H:

Lt,g = {l→ r | ∃σ, ground substitution on G, l = Var(t)σ and r =H tσ}

The set of rules LI is defined as the union of the sets Lt,g for all t ∈ S.

Each rule l → r in LI defines an intruder deduction relation →l→r between
finite sets of terms. Given two finite sets of terms E and F we define E →l→r F
if and only if l ⊆ E and F = E ∪ {r}. We denote →I the union of the relations
→l→r for all l→ r in LI and by →∗

I the transitive closure of →I . Note that by
definition, given sets of terms E, E′ ,F and F ′ such that E =H E′ and F =H F ′

we have E →I F iff E′ →I F ′. We simply denote by → the relation →I when
there is no ambiguity about I.

A derivation D of length n, n ≥ 0, is a sequence of steps of the form E0 →I

E0, t1 →I · · · →I En with finite sets of ground terms E0, . . . En, and ground
terms t1, . . . , tn, such that Ei = Ei−1 ∪ {ti} for every i ∈ {1, . . . , n}. The term

tn is called the goal of the derivation. We define E
I

to be equal to the set
{t | ∃F s.t. E →∗

I F and t ∈ F} i.e. the set of terms that can be derived from E.

If there is no ambiguity on the deduction system I we write E instead of E
I
.

We now define well-moded intruder systems and their properties.

Definition 3. Given a well-moded equational theory H, an intruder system I =
〈G, S,H〉 is well-moded if all terms in S are well-moded.

3.2 Simultaneous constraint satisfaction problems

We introduce now the constraint systems to be solved for checking protocols. It
is shown in [3] how these constraint systems permit to express the reachability
of a state in a protocol execution.

Definition 4. (Constraint systems) Let I = 〈G, S,H〉 be an intruder system.
An I-Constraint system C is denoted: ((Ei ⊲ vi)i∈{1,...,n},S) and it is defined
by a sequence of couples (Ei, vi)i∈{1,...,n} with vi ∈ X and Ei ⊆ T(G,X) for
i ∈ {1, . . . , n}, and Ei−1 ⊆ Ei for i ∈ {2, . . . , n} and by an H-unification system
S.

An I-Constraint system C is satisfied by a ground substitution σ if for all
i ∈ {1, . . . , n} we have viσ ∈ Eiσ and if σ |=H S. If a ground substitution σ
satisfies a constraint system C we denote it by σ |=I C.

Constraint systems are denoted by C and decorations thereof. Note that if a
substitution σ is a solution of a constraint system C, by definition of constraint
and unification systems the substitution (σ)↓ is also a solution of C. In the context
of cryptographic protocols the inclusion Ei−1 ⊆ Ei means that the knowledge
of an intruder does not decrease as the protocol progresses: after receiving a
message a honest agent will respond to it. This response can be added to the
knowledge of an intruder who listens to all communications.

We are not interested in general constraint systems but only in those related
to protocols. In particular we need to express that a message to be sent at some
step i should be built from previously received messages recorded in the variables
vj , j < i, and from the initial knowledge. To this end we define:

Definition 5. (Deterministic Constraint Systems) We say that an I-constraint
system ((Ei ⊲ vi)i∈{1,...,n},S) is deterministic if for all i in {1, . . . , n} we have
Var(Ei) ⊆ {v1, . . . , vi−1}

In order to be able to combine solutions of constraints for the intruder theory
I with solutions of constraint systems for intruders defined on a disjoint signature
we have, as for unification, to introduce some ordering constraints to be satisfied
by the solution (see [3] for details on this construction). Intuitively, these ordering
constraints prevent from introducing cycle when building a global solution. This
motivates us to define the Ordered Satisfiability problem:

Ordered Satisfiability

Input: an I-constraint system C, X = Var(C), C = Const(C) and a
linear ordering ≺ on X ∪ C.

Output: Sat iff there exists a substitution σ such that σ |=I C and
for all x ∈ X and c ∈ C, x ≺ c implies c /∈ Subsyn(xσ)

4 Model of a collision-aware intruder

We define in this section intruder systems to model the way an active intruder
may deliberately create collisions for the application of hash functions. Note
that our model doesn’t take into account the time for finding collisions, which
is significantly greater than the time necessary for other operations. The results
that we can obtain can therefore be seen as worst-case results, and should be
assessed with respect to the possible time deadline in the actual specification
of a protocol under analysis. Further works will also be concerned with the fact
that given a bound on intruder’s deduction capabilities, a collision may be found
only with a probability p, 0 ≤ p ≤ 1.

We consider in this paper five different intruder models. We will reduce in
two steps the most complex one to a simpler one, relying on the notion of well-
moded theories and on the results in [4]. We then prove decidability of ordered
reachability for this simpler intruder system.

4.1 Intruder on words

We first define our goal intruder, that is an intruder only able to concatenate
messages and extract prefixes and suffixes. We denote IAU = 〈FAU , SAU , EAU 〉
an intruder system that operates on words, such that, if · denotes the concate-
nation and ǫ denotes the empty word, the intruder has at its disposal all ground
instances of the following deduction rules:

x, y → x · y
x · y → x
x · y → y
→ ǫ

We moreover assume that the concatenation and empty word operations satisfy
the following equations:

{

x · (y · z) = (x · y) · z
x · ǫ = x ǫ · x = x

Given these definitions, we can see terms over T(FAU,X) as words over the
alphabet X ∪ C, and we denote letters(w) the set of atoms (either variable or
free constants) occurring in w. As usual, we extend letters() to set of terms in
T(FAU,X) by taking the union of letters occurring in each term.

Pitfall. Note that this intruder model does not fit into the intruder systems
definition of [3, 4]. The rationale for this is that, in the notation given here,
the application of the rules is non-deterministic, and thus cannot be modelled
easily into our “deduction by normalisation” model. We however believe that a
deterministic and still associative model of message concatenation by means of an
“element” unary operator, associative operator “·”, and Head and Tail operations
may be introduced. This means that we also assume that unification problems
are only among words of this underlying theory, disregarding equations that
may involve these extra operators. We leave the exact soundness of our model
for further analysis and concentrate on the treatment of collisions discovery for
hash functions.

4.2 Intruder on words with free function symbols

We extend the IAU intruder with two free function symbols f and g of arity 4,
and we add to the possible deductions of the intruder the application of the
following deduction rules:

{

x1, x2, y1, y2 → g(x1, x2, y1, y2)
x1, x2, y1, y2 → f(x1, x2, y1, y2)

This leads to an intruder system that will be an intermediate in the proof of our
decision procedure. We denote it Ifree, and we have:

Ifree = 〈FAU ∪ {g, f}, SAU ∪ {f(x1, x2, y1, y2), g(x1, x2, y1, y2)}, EAU〉 .

4.3 Hash-colliding intruder

We consider a signature modelling the following different operations:

– The concatenation of two messages, the extraction of a suffix or a prefix of
a concatenated message and the production of an empty message, as in the
case of the IAU intruder system;

– The application of a hash function h for which it is possible to find collisions,
the hash-value of a message m denoted h(m);

– Two function symbols f and g denoting the (complex) algorithm being used
to find collisions starting from two different messages m and m′.

We assume that the algorithm employed by the intruder to find collisions
starting from two messages m and m′ proceeds as follows:

1. First the intruder splits both messages into two parts, thus choosing
m1,m2,m

′
1,m

′
2 such that m = m1 ·m2 and m′ = m′

1 ·m
′
2;

2. Then, in order to find collisions, the intruder computes two messages
g(m1,m2,m

′
1,m

′
2) and f(m1,m2,m

′
1,m

′
2) such that:

(HC) h(m1 · g(m1,m2,m
′
1,m

′
2) ·m2) = h(m′

1 · f(m1,m2,m
′
1,m

′
2) ·m

′
2)

A consequence of our model is that in order to build collisions starting from
two messages m and m′ the intruder must know (i.e. have in its knowledge set)
these two messages. A side effect is that it is not possible to build three (or
more) different messages with the same hash value by iterating the research for
collisions. Formally, the core of the proof of this assertion is the following lemma
that permits to prove that in an equivalence class of Eh containing pure terms
there exists only two different members modulo EAU. The proof is based on the
fact that occur-check analysis, and thus unification, would fail in a tentative
counter-example.

Lemma 1. Let t = h(t1 ·φ(t2, t3, t4, t5) · t6) and t′ = h(x1 · g(x1, x2, x3, x4) ·x2)
be two pure terms such that φ ∈ {f, g} and the ti are pure FAU terms and there
exists u1, u2 ∈ {t2, . . . , t5} such that t1 =EAU

u1, t6 =EAU
u2. Then for any

substitution σ, we have σ |= t
?
= ∅t

′ iff σ |=
{

ti+1
?
= EAU

xi

}

i∈{1,...,4}
and:

{

φ = g

x1σ = t1σ x2σ = t6σ

In a more comprehensive model we might moreover want to model that col-
lisions cannot always be found using attacks published in the literature, but
instead that given a deadline, the probability p of success of an attack is strictly
below 1. This would imply that the application of this rule by the intruder
would, assuming independence of collision attacks, reduce the likelihood of the
symbolic attack found. In this setting our model would account for attacks with
a non-negligible probability of success as is shown in [1].

Leaving probabilities aside, we express intruder’s deductions in our setting
by adding the rule x → h(x) to the deduction rules of the Ifree intruder. As a
consequence, the previous description of the Ifree intruder enables us to model a
collision-capable intruder

Ih=〈Fh, Sh, Eh〉

with:

Fh = FAU ∪ {f, g,h}
Sh = SAU ∪ {f(x1, x2, y1, y2), g(x1, x2, y1, y2),h(x)}
Eh = EAU ∪ {(HC)}

For the following mode and signature functions the theory EAU ∪ {(HC)} is
a well-moded theory.

mode:

{

m(., 1) = m(., 2) = m(g , i) = m(f , i) = 0 ∀i ∈ {1, . . . , 4}
m(h , 1) = 0

Signature:

{

Sign(·) = Sign(ǫ) = Sign(f) = Sign(g) = 0
Sign(h) = 1

The main result of this paper is the following decidability result.

Theorem 1 Ordered satisfiability for the Ih intruder is decidable.

Ih

Algorithm 1
��

Ifree

Generic combination algorithm [3]
��

||
|

~~||
|

DDD

!!
DDD

Ig If IAU

Fig. 1. Reduction strategy

The rest of this paper is dedicated
to the proof of this theorem. The tech-
nique employed consists in successive
reductions to simpler problems and in
finally proving that all simpler prob-
lems are decidable. These reductions
are summarised in Figure 4.3. A proof
sketch for the decidability of the Ig, If
and IAU is given in Section 5.2. Algo-
rithm 1, that permits the first reduc-
tion, is based on the facts that the Ih intruder is well-moded (as seen above) and
that we can apply a reduction according to the criterion of [4] for well-moded
intruder systems.

HYPOTHESIS 1: If E →S1
E, r →S1

E, r, t and r /∈ Sub(E, t) ∪ Cspe then
there is a set of terms F such that E →∗

S0
F →S1

F, t.

If a well-moded intruder system system satisfies this hypothesis, then the
following proposition holds. It is a cornerstone for the proof of completeness of
Algorithm 1.

Proposition 1. Let I be a well-moded intruder that satisfies hypothesis 1, and
let C be a deterministic I-constraint system. If C is satisfiable, there exists a
substitution σ such that σ |=I C and:

|{t ∈ Sub((Sub(C)σ)↓) |Sign(t) = 1}| ≤ |{t ∈ Sub(C) |Sign(t) = 1}|+ |X|

5 Decidability of reachability

We present here a decision procedure for Ordered Satisfiability Problem for Ih
intruder system. Our technique consists in simplifying the intruder system Ih
to Ifree. We then reduce the decidability problems of ordered reachability for
deterministic constraint problems for Ifree to the decidability problems of ordered
reachability for deterministic constraint problems for Ig, If and IAU. We finally
prove the decidability for these intruder systems.

5.1 Reduction to Ifree-intruder

Algorithm We present here a procedure for reducing Ih intruder system to
Ifree intruder system that takes as input a deterministic constraint system C
= ((Ei⊲vi)i∈{1,...,n},S) and a linear ordering≺i on atoms of C. Let m = |Sub(C)|
be the number of subterms in C.

Algorithm 1

Step 1. Choose a number k ≤ m and add k equations hj
?
= h(cj) to S where the

hj , cj are new variables.
Step 2. For each t ∈ Sub(C) ∪ {c1, . . . , ck} choose a type 0 or 1. If t is of type 1,

choose jt ∈ {1, . . . , k} and add an equation t
?
= hjt

to S.

Step 3. For all t, t′ ∈ Sub(C), if there exists h ∈ {h1, . . . , hk} such that t
?
= h and

t′
?
= h are in S, add to S an equation t

?
= t′ to S.

Step 4. Choose a subset H of {c1, . . . , ck} and guess a total order <d on L =
H ∪ {v1, . . . , vn} such that vi <d vj iff i < j. Write the obtained list
w1, . . . , wn+k. Let S’ be the unification system obtained so far, and form:
C′ = ((Fi ⊲ wj)1≤j≤n+k

,S ′) with:

F1 = E1

Fi+1 = Fi ∪ (Ej+1 \ Ej) if wi = vj

Fi+1 = Fi, wi Otherwise

Step 5. For all t ∈ Sub(C) chosen of type 1, replace all occurrences of t in the Fi and
all occurrence occurrences of t as a strict subterm in S ′ by the representant
of its class hjt

. Let F ′
i be the set Fi once this abstraction has been applied

Step 6. Non-deterministically reduce S’ to a unification system S” free of h symbols,
and form the satisfiable Ifree constraint system:

C′′ = ((F ′
i ⊲ wi)1≤i≤n+k,S ′′)

Sketch of the completeness proof. Assume that the initial deterministic con-
straint system is satisfiable. By Proposition 1, there exists a bound substitution
σ satisfying C.

– Let the number k chosen at Step 1 be the number of subterms whose top
symbol is h in Sub((Sub(C)σ)↓). The hj represent the different values of the
terms of signature 1. In the sequel we assume that σ is extended to the hj

such that all hjσ have a different value and are of signature 1.
– In Step 2, if Sign((tσ)↓) = 1 we choose the j such that (tσ)↓ = hjσ and add

the corresponding equation to S.
– In Step 3, we had equations between terms whose normal form by σ are

equals in order to simplify the reduction to Ifree.
– Step 4 is slightly more intricate. It relies on the fact that a rule in S1 may

only yield a term whose normal form by σ is of signature 1.

The subset H correspond to the subterms of signature 1 of Sub((Sub(Cσ))↓)
that are deduced by the intruder using a rule in S1. We then anticipate
the construction of hjσ with the application of a rule in S1 by requiring
that the corresponding cjσ has to be build just before. Given the bound
on k, this means that all remaining deductions performed by the intruder
are now instances of rules in S0. Since C is satisfied by σ there exists a
choice corresponding to quasi well-formed derivations such that all remaining
reachability constraints are satisfiable by instances of rules in S0.

– At Step 5 we “purify” almost all the constraint system by removing all
occurrences of a symbol h but the ones that are on the top of an equality.
By the choice of the equivalence classes it is clear that this purification does
not loose the satisfiability by the substitution σ.

– The non-deterministic reduction is performed by guessing whether the equal-
ity of two hashes is the consequence of a collision set up by the intruder or
of the equality of the hashed messages, and will produce a constraint system
C” without h symbol and also satisfiable by σ.

5.2 Decidability of reachability for the Ifree-intruder

We first reduce the Ifree intruder system to simpler intruder systems using the
combination result of [3]. We will consider the decidability of these subsystems
in the remainder of this section.

Theorem 2 Ordered satisfiability for the Ifree intruder system is decidable.

Decidability of reachability for the Ig-intruder. In this subsection, we consider
an Ig intruder system with Ig = 〈g, g(x1, x2, x

′
1, x

′
2), ∅〉. This intruder has at its

disposal all ground instances of the following deduction rule:

x1, x2, y1, y2 → g(x1, x2, y1, y2)

The proof of the following theorem consists in first proving the existence of
well-formed derivations for the standard subterm relation in the spirit of [16],
with the additional simplification that all rules are composition rules. One then
guesses a minimal attack in non-deterministic polynomial time. Since the Ig and
If intruder are isomorphic the result also applies to If after renaming of the
symbol g into f.

Theorem 3 Ordered satisfiability for the Ig intruder system is decidable.

Decidability of reachability for the AU-intruder. We now give a proof sketch for
the decidability of ordered satisfiability for the IAU intruder since the procedure
is new.

Theorem 4 Ordered satisfiability for the IAU intruder system is decidable.

Proof. The algorithm proceeds as follows:

– Transform the deduction constraints E ⊲ v into an ordering constraint <d;
– Check that <=<d ∪ <i is still a partial order on atoms of C;
– Solve the unification problem with linear constant restriction <.

Let C = ((Ei ⊲ vi)0≤i≤n,S) be a deterministic constraint system for the IAU

intruder, <i be a (partial) order on Cons(C)∪Var(C), and let σ be a solution of
the (C, <i) ordered satisfiability problem.

Given a set of terms E ⊆ T(FAU,X), let us denote KC = (Cons(C) \
letters(E)) \X . In plain words, KC(E) is the set of constants in C not occurring
in E. We are now ready to define <d as a partial order on Cons(C)∪{v0, . . . , vn}:
We set vi <d c for all constants c in KC(Ei).

Claim. For all σ, we have σ |= (C, <i) if, and only if, σ |= (S, <i ∪ <d)

Proof of the claim. Let us first prove the direct implication. Let σ be a
ground solution of the (C, <i) ordered satisfiability problem. By definition we
have that σ is a solution of (S, <i) ordered unifiability problem. Since for all
0 ≤ i ≤ n we have σ |= Ei⊲vi, we easily see that letters((viσ)↓) ⊆ Cons(Ei), and
therefore letters((viσ)↓)∩KC(Ei) = ∅. Thus σ is also a solution of (S, <d ∪ <i).
Conversely, assume now that σ is a ground solution of (S, <d ∪ <i). By definition
for all 0 ≤ i ≤ n we have letters((viσ)↓)∩KC(Ei) = ∅, and thus letters((viσ)↓) ⊆
letters(Ei) \ X . Thus we have (viσ)↓ ∈ (Eiσ)↓ for all 0 ≤ i ≤ n, and thus
σ |= (C, <i) ♦

Since unifiability with linear constant restriction is decidable for the AU
equational theory [18], this finishes the proof of the theorem. Note that the
exact complexity is not known, but the problem is NP-hard and solvable in
PSPACE [13, 14], and it is conjectured to be in NP [15, 11]. �

6 Conclusion

We have presented here a novel decision procedure for the search for attacks on
protocols employing hash functions subject to collision attacks. Since this proce-
dure is of practical interest for the analysis of the already normalised protocols
relying on these weak functions, we plan to implement it into an already exist-
ing tool, CL-Atse. We also plan to formalise according to the model of [3] the
underlying AU intruder system. In order to model hash functions we have intro-
duced new symbols to denote the ability to create messages with the same hash
value. This introduction amounts to the skolemisation of the equational prop-
erty describing the existence of collisions We believe that this construction can
be extended to model the more complex and game-based properties that appear
when relating a symbolic and a concrete model of cryptographic primitives.

References

1. M. Baudet. Random polynomial-time attacks and Dolev-Yao models. In Siva
Anantharaman, editor, Proceedings of the Workshop on Security of Systems: For-
malism and Tools (SASYFT’04), Orléans, France, June 2004.

2. E. Biham and R. Chen. Near-collisions of sha-0. In M. K. Franklin, editor,
CRYPTO, volume 3152 of LNCS, pages 290–305. Springer, 2004.

3. Y. Chevalier and M. Rusinowitch. Combining intruder theories. In L. Caires, G. F.
Italiano, L. Monteiro, C. Palamidessi, and M. Yung, editors, ICALP, volume 3580
of LNCS, pages 639–651. Springer, 2005.

4. Y. Chevalier and M. Rusinowitch. Hierarchical combination of intruder theories.
In Frank Pfenning, editor, RTA, volume 4098 of LNCS, pages 108–122. Springer,
2006.

5. R. Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume 3494 of LNCS.
Springer, 2005.

6. B. den Boer and A. Bosselaers. Collisions for the compressin function of md5. In
EUROCRYPT, pages 293–304. Springer, 1993.

7. H. Dobbertin. Cryptanalysis of md4. In D. Gollmann, editor, Fast Software En-
cryption, volume 1039 of LNCS, pages 53–69. Springer, 1996.

8. H. Dobbertin. Cryptanalysis of md5 compress. Presented at the rumps session of
Eurocrypt’96, 1996.

9. V. Kl̀ıma. Finding md5 collisions - a toy for a notebook, 2005. Cryptology ePrint
Archive, Report 2005/075. http://eprint.iacr.org/.

10. V. Kl̀ıma. Finding md5 collisions on a notebook pc using multi-message modifica-
tons, 2005. Cryptology ePrint Archive, Report 2005/102. http://eprint.iacr.org/.

11. Kim Guldstrand Larsen, Sven Skyum, and Glynn Winskel. Automata, languages
and programming, 25th international colloquium, icalp’98, aalborg, denmark, july
13-17, 1998, proceedings. In ICALP, volume 1443 of LNCS. Springer, 1998.

12. C. Meadows. The NRL protocol analyzer: an overview. Journal of Logic Program-
ming, 26(2):113–131, 1996.

13. W. Plandowski. Satisfiability of word equations with constants is in pspace. In
FOCS, pages 495–500, 1999.

14. W. Plandowski. Satisfiability of word equations with constants is in pspace. J.
ACM, pages 483–496, 2004.

15. W. Plandowski and W. Rytter. Application of lempel-ziv encodings to the solution
of words equations. In ICALP, pages 731–742, 1998.

16. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions
is NP-complete. In Proc.14th IEEE Computer Security Foundations Workshop,
Cape Breton, Nova Scotia, June 2001. IEEE Press.

17. Y. Sasaki, Y. Naito, N. Kunihiro, and K. Ohta. Wang’s sufficient conditions of
md5 are not sufficient, 2005. http://eprint.iacr.org/.

18. K. U. Schulz. Makanin’s algorithm for word equations - two improvements and
a generalization. In K. U. Schulz, editor, IWWERT, volume 572 of LNCS, pages
85–150. Springer, 1990.

19. X. Wang, D. Feng, X. Lai, and H. Yu. Collisions for hash functions md4, md5 ,
haval-128 and ripemd. http://eprint.iacr.org/, 2004.

20. X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the hash functions
md4 and ripemd. In Cramer [5], pages 1–18.

21. X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full sha-1. In V. Shoup,
editor, CRYPTO, volume 3621 of LNCS, pages 17–36. Springer, 2005.

22. X. Wang and H. Yu. How to break md5 and other hash functions. In Cramer [5],
pages 19–35.

23. J. Yajima and T. Shimoyama. Wang’s sufficient conditions of md5 are not sufficient,
2005. http://eprint.iacr.org/.

Strategy for Flaws Detection based on a Services-driven

Model for Group Protocols

Najah Chridi and Laurent Vigneron ⋆

LORIA – UHP-UN2 (UMR 7503)
BP 239, 54506 Vandœuvre-lès-Nancy Cedex, France

{chridi,vigneron}@loria.fr

Abstract. Group key agreement is important in many modern public and dedicated ap-
plications. Nevertheless, as they have to be secure, their design is not straightforward.
As such, the modelling and the verification of such protocols are necessary in order to
avoid eventual weaknesses. This paper investigates a strategy for flaws detection for group
protocols properties. The strategy is based on both a services driven model for group pro-
tocols and constraint solving. Our strategy has been applied to several group protocols
such as GDH.2 and the Asokan-Ginzboorg protocol. This permits to pinpoint new attacks
on them. The result found for the case of GDH.2 with four participants can be generalized
to n participants. Another general attack has also been found for the case of the A-GDH.2
protocol.

1 Introduction

In recent years, applications requiring an unbounded number of participants have received in-
creasing attention either for public domains or dedicated ones. As such, the design of secure
group protocols [14] continues to be one of the most challenging areas of security research. To
secure their communications, group members need to use a shared key, known as group key,
which has to be updated following the dynamics of the group (join or leave operations, . . .).
Therefore, several protocols dedicated to key establishment and updates have been proposed [8].
Among them, we are particularly interested in group key agreement protocols [9]. These proto-
cols enable a group of participants to share a common key over insecure public networks, even
when adversaries completely control all the communications.

Research in formal verification of cryptographic protocols has so far mainly concentrated on
reachability properties such as secrecy and authentication. It has given so successful interesting
results in the last years that this field could be considered as saturated. As such, many fully
automatic tools have been developed and successfully applied to find flaws in published protocols,
where many of these tools employ so-called constraint solving (see, e.g., [3]). Nowadays, dealing
with the verification of group protocols arises several problems. Indeed, such protocols highlight
new requirements and consider some complicated intended security properties other than secrecy
and authentication. In fact, most of the verification approaches can only tackle specific models
of protocols, and most of the time require the size of the group to be set in advance. This leads
to the restriction of the chances to discover attacks. Besides, group membership is very dynamic;
participants can join or leave the group at any time. As such, security requirements are more
complicated to satisfy.

The main contribution of the present work is a strategy for flaws detection for the group
protocols security properties. Our approach is based on both the services driven model described

⋆ This work is supported by the QSL operation COWS.

in [4] and constraint solving. As mentioned, constraint solving has been successfully employed for
reachability properties in the past and proved to be a good basis for practical implementations.
The services driven model permits to specify security properties for group protocols as sets
of constraints. This model specifies both group protocols and a large class of their intended
properties, varying from standard secrecy and authentication properties to much trickier ones,
such as key integrity, and backward and forward secrecy. Hence, our strategy paves the way for
extending existing tools for reachability properties to deal with security properties for group
protocols.

In this paper, we focus on group key establishment protocols. But this is worth mentioning
that our method is also dealing with contributing protocols. To present our results, the paper is
structured as follows. We first introduce our running example: The Asokan-Ginzboorg Protocol [2]
(Section 2). This protocol will be used throughout this paper to illustrate every new notion
introduced. In Section 3, we present the input required by our method. Then, Section 4 provides
the necessary background concerning the services driven model. In Section 5, we show how this
model can be used to search for attacks. The management of constraints and intruder knowledge
is explained in Sections 6 and 7. We illustrate the application of our method to two examples
in Section 8. And after a comparision with related work (Section 9), we summarize the results
obtained by our approach and then discuss the related work (Section 10).

2 Running Example: The Asokan-Ginzboorg Protocol

Throughout this paper we will illustrate our ideas using a running example: the Asokan-Ginzboorg
protocol [2]. It describes the establishment of a session key between a leader (An) and a random
number n of participants (Ai where 1 <= i <= n). The protocol proceeds by assuming that a
short group password P is chosen and displayed, and then known by all. We assume also that
there are two informations known by all the group: a one way hash function H and a commonly
known function F . When the leader starts the execution of the protocol by sending the key of
encoding (E), each participant generates two informations (a symmetric key (Ri) and a con-
tribution to the group key (Si)) and sends them encrypted by the key E. Messages exchanged
throughout the protocol are expressed as follows:

1.An −→ ALL : An, {E}P

2.Ai −→ An : Ai, {Ri, Si}E, i=1,. . . ,n-1
3.An −→ Ai : {{Sj, j=1,. . . ,n}}Ri

, i=1,. . . ,n-1
4.Ai −→ An : Ai, {Si, H(S1, . . . , Sn)}k some i, k = F (S1, . . . , Sn).

In this messages exchange, E is a public key generated by the leader and used to encrypt the
contribution (Si) of each participant Ai. Ri denotes a fresh symmetric key generated by the
participant Ai, sent to the leader with the contribution Si. The leader will use it to encrypt all
contributions (including Sn) in order to send the whole message to the participant Ai.

3 The Method’s Input

As any communication protocol, a group protocol can be seen as an exchange of messages between
several participants. This exchange is usually described by the set of actions executed by each
participant in a normal protocol execution, i.e. without intervention of an Intruder.
Formally speaking, we define an instance of the protocol as the union of instances of roles and
Intruder knowledge. An instance of a protocol is then given by ({Rp → Sp}p∈P , <P , S0) where,
P is a finite set and:

– {Rp → Sp}p∈P denotes the set of rules of receive-send messages exchanged between hon-
est participants. Each rule defines one step of the protocol: the messages sent by a honest
participant (Rp) and the expected response (Sp). Note that Var(Rp) ⊆ Var(Sp).

– <P is a partial order over P .
– S0 is a set of terms representing the initial Intruder knowledge.

Let us return to our running example: the Asokan-Ginzboorg protocol. Having tested our method
over several scenarios of this protocol, we have found an interesting result in the case of two
parallel sessions. Thus, the modelling considered in the following corresponds to that scenario.
In the first session, we have two participants: A1 is the leader and A2 is a normal member of the
group. In the second session, the roles are exchanged.
Throughout this paper, while expressing informations related to the Asokan-Ginzboorg protocol,
we adopt the following notations:

– pijk denotes the j-th step of the protocol played by the i-th participant in the k-th session.
– Algij the point of vue of the group key of the i-th participant during the j-th session.
– Terms written in capital letters are informations known by the participants whether from

the beginning of the execution or generated through the execution.
– Terms written in small letters denote variables. They may be instantiated by any values of

the same type.
– Sij denotes the contribution to the group key of the i-th participant in the j-th session.

The two sessions are expressed by the following steps:

p111 : Init −→ A1, {E1}P

p121 : x1, {x2, x3}E1
−→ {x3, S11}x2

p131 : x1, {x3, H(x3, S11)}F (x3,S11) −→ End, Alg11 = F(x3,S11)
p211 : x4, {x5}P −→ A2, {R1, S21}x5

p221 : {x6, x7}R1
−→ A2, {S21, H(x6, x7)}F (x6,x7), Alg21 = F(x6,x7)

p212 : Init −→ A2, {E2}P

p222 : x8, {x9, x10}E2
−→ {x10, S22}x9

p232 : x8, {x10, H(x10, S22)}F (x10,S22) −→ End, Alg22 = F(x10,S22)
p112 : x11, {x12}P −→ A1, {R2, S12}x12

p122 : {x13, x14}R2
−→ A1, {S12, H(x13, x14)}F (x13,x14), Alg12 = F(x13,x14)

The set of steps P = {p111, p121, p131, p211, p221, p212, p222, p232, p112, p122} is ordered by the par-
tial order <P : p111 <P p121 <P p131, p211 <P p221, p212 <P p222 <P p232and p112 <P p122.

4 The Services driven Model for Group Protocols

The services driven model presented in [4] permits to model contributed protocols, to study their
characteristics and security properties. This model has been applied on several protocols, such as
A-GDH.2, SA-GDH.2, Asokan-Ginzboorg and Bresson-Chevassaut-Essiari-Pointcheval and has
permitted to pinpoint several existing attack types on them. A group protocol is modelled by
three components <A,K,S>, where

– A: set of agents, members of the group,
– K: set of members knowledge,
– S: set of services. A service denotes the contribution of a participant to the generation of

the group key. The contribution of an agent ai to an agent aj is all information (message)
generated by ai and necessary for aj to deduce the group key.

Let i ∈ N, each ai ∈ A (i-th participant) is linked with other sets defined as follows:

– Si ⊆ S is the minimal set of services necessary to ai in order to generate the group key;
– Ki ⊆ K is the minimal set of private knowledge of ai, useful for generating services and the

group key; it includes the initial private knowledge and the information generated during the
protocol’s execution.

– Kij ⊆ K is the set of knowledge shared between agents ai and aj ; it denotes the minimal set
of shared knowledge that is useful for generating the group key; this information is given by
the protocol’s specification. Note that Kij = Kji.

In addition to the services used for the group key generation, other subsets of services represent-
ing the services provided by an agent are defined. Thus, Sai

denotes the subset of services to
which ai has contributed (directly or not) by providing a private information.
Sai

= {s ∈ S | ∃t subterm of s, such as t ∈ Ki}
This system permits to formally define security properties related to group protocols. Some of
them are strongly linked to the time evolution of the group, such as the independence of group
keys, the forward secrecy or the backward secrecy. Moreover, other properties are time indepen-
dent, like the implicit authentication, the secrecy, the confirmation or the integrity. The modelling
of these security properties is based on the interaction of subsets defined above. For instance, the
security property to be verified for the Asokan-Ginzboorg protocol is the key agreement property.
It says that for the same session, the group members have to deduce the same group key. This
property is specified in our model by: ∀ai, aj ∈ A with i 6= j, Algi = Algj.

For our example with two participants (A1 and A2), the group key agreement is violated
when: Alg12 6= Alg22, that is F (x10, S22) 6= F (x13, x14), or Alg11 6= Alg21, that is F (x3, S11) 6=
F (x6, x7). Therefore, the violation of the group key agreement property can be specified by the
following constraints: x10 6= x13 or x14 6= S22 or x6 6= x3 or x7 6= S11.
For more details about the modelling and the verification of other properties, the reader must
refer to the model presented in [4]. In the present paper we show how this model can be used to
search for attacks in group protocols.

5 Searching for Attacks in Group Protocols

We present in this section the algorithm of searching for attacks. It is described as follows:

Algorithm AttackSearch(ppty,instance)
execCorrect = True
Exec = {(∅, {Rp → Sp}p∈P , S0, ∅)}
SCP = ConstraintsPpty(ppty,instance)
While execCorrect = True and Exec 6= ∅ Do

choose (PT,PTT,S,SC)∈ Exec
canCompose = True
While canCompose = True and PTT 6= ∅ do

choose p minimal such as Rp → Sp ∈ PTT

If Compose(Rp,S) then

Treat(Rp → Sp,S,SC)
Take Rp → Sp from PTT
Add Rp → Sp to PT

else

canCompose = False

EndIf

End

If canCompose = True Then

If Attack(SC,SCP) Then

execCorrect = False
EndIf

EndIf

End

The algorithm takes as parameters the instance of the protocol and the property to verify.
The first step of the procedure of searching for attacks consists in the generation of the

constraints set (SCP) related to the violation of the security property given in parameter as
’ppty’. This is done in the algorithm by the function ConstraintsPpty. With this intention, we
follow the steps described below:

– the services driven modelling of the protocol’s instance (parameter ’instance’);
– the services driven modelling of the violation of the property (parameter ’ppty’);
– the deduction of the set of constraints related to the violation of the security property.

The constraints set generated constitutes the first level of the constraints tree (to be explained
in Section 6).

The idea behind the algorithm is to consider all the possible executions of the protocol in
order to find one execution corresponding to an attack. An execution is defined by the quadruple
(PT ,PTT ,S,CS) where,

– PT : the set of steps of the execution belonging to {Rp → Sp}p∈P which are already treated.
They are messages already exchanged between honest participants and the Intruder. At the
beginning of the procedure, this set is empty.

– PTT : the set of steps of the execution belonging to {Rp → Sp}p∈P which have not been
treated yet. This set is provided with a total order to say that a step must be treated before
an other and thus a message must be exchanged before an other. Initially, this set contains
all the steps given as parameter to the procedure AttackSearch.

– S: the set of the Intruder knowledge after the last treated step. Initially, this set is equal to
the set S0 of the instance given as parameter to the procedure AttackSearch.

– CS: the constraints set of the protocol. At the beginning of the procedure, this set is empty.

Consider an execution of the protocol among the (finite) set of possible executions. An execution
corresponds to an attack if the constraints generated throughout all the execution’s steps (de-
noted SC) are coherent with the constraints of the violation of the secutity property. This test
of coherence can be done at the end of the execution. In fact, for each step of the execution, we
consider the rule Rp → Sp. The aim of the Intruder is to compose from his current knowledge a
term corresponding to the pattern of the term Rp. In the algorithm, this is tested by the function
Compose. This function permits to test if the Intruder can compose the message Rp from his
current knowledge. We note that this function uses only the Intruder composition rules since
we assume that the set of the Intruder knowledge S contains only terms that cannot be decom-
posed yet. This hypothesis is maintained thanks to the Intruder knowledge management (to be
explained in Section 7). The function Compose returns a boolean result. If the result is negative,
then the Intruder fails in composing such a message, and so, he cannot go on in the execution.
Thus, this execution cannot lead to an attack. In this case, we consider another execution.

If the result is positive, then we have to treat the current step Rp → Sp of the instance. This
is the role of the function Treat. The matching between composed messages and the message

expected leads to the construction of constraints joining informations (constants or variables)
given in the message expected to the ones in the composed messages. We note that, in the case
where the Intruder can compose several messages matching with the expected message, we obtain
several alternatives and thus several choices of constraints (presented as a disjunction). These
constraints are added to the set of the protocol constraints SC.
Behind this addition, there is an important point that we must focus on: the management of
constraints, especially when there is a huge constraints’ set to be added only in one step of an
instance. This will be discussed in Section 6.

Once the messages are composed, the Intruder gets new knowledge that he will use in the
next instance’s steps. Therefore, the Intruder’s knowledge must be updated for each acquisition
of new information. Thus, we have to manage the Intruder knowledge set S for each step of a
protocol instance. Then, we add to this set S the new information acquired while taking into
account the definition of S as the set where we cannot apply the Intruder decomposition rules
to its terms yet. This notion will be more studied in Section 7.

At the end of the execution, the two sets of constraints SC and SCp are solved in order to
get a solution that relates variables of the execution’s steps with constants or with each other.
This is the aim of the function Attack. It tests if the two constraints’ sets are coherent. The two
sets are coherent if and only if there exists at least one path in the constraints tree that contains
only coherent constraints when the execution finishes (see Section 6).
If the two sets are coherent then the tested security property is violated for the concerned exe-
cution. In this case, the function permits to solve the constraints based on the union of the two
sets SC and SCP . While instantiating variables in the execution in question with the solution
found, we obtain the execution’s trace of the attack.

This method is efficient since the search for flaws is static as it corresponds to a resolution of
two constraints systems. Nevertheless, for an execution step, generating the constraints matching
all possible composed messages to the expected message can lead to a huge set of constraints. In
order to minimize this set, we propose two kinds of suggestions:

– In the first one, for an execution step, we consider only constraints relying on variables
used in the property’s violation constraints (we note V this set of variables). For the other
variables, we just save the information that the message must be composed from a certain
set of knowledge: the current Intruder knowledge.

– The second proposition is based on the combination between the construction of the con-
straints set of the protocol SC and the test of coherence of the two sets of constraints SC

et SCP . Indeed, while generating the constraints of the protocol related to one step, we test
the coherence of this subset of constraints with all the constraints built before. This permits
to eliminate unnecessary constraints. This can be done by the use of the constraints tree (see
Section 6).

6 Constraints Management

Our method for searching for flaws is based on the constraints’ solving. The first part of con-
straints comes from the modelling of the violation of the security property to be tested in the
services driven model (see Section 4). The second part is generated and updated at each step
treated among the different steps composing the protocol’s instance. It is to be noticed that these
steps are totally ordered in an execution.
Since the aim of our procedure is to search for an eventual attack, it’s goal is to find an execution
that corresponds to two coherent sets of constraints SC and SCP . Knowing the set SCP , in order

to minimize the number of constraints added in an execution’s step, we just add the necessary
constraints that are coherent with the ones of the previous steps. To do this, we propose to
associate the execution tree to a constraints tree. The idea behind the constraints tree is to allow
only the addition of the necessary constraints to the set SC and thus to consider only constraints
that are coherent with the ones of the previous steps.

The constraints tree is initially constructed from the constraints related to the violation of
the security property to be tested. These constraints represent the first level of the tree. We note
V the set of variables given in the current constraints of the protocol. This set is initiated to the
variables manipulated in the first level of the constraints tree. Besides, as constraints of the first
level can explain different choices to violate the property to be verified, the level concerned (the
first) is composed of different states representing these alternatives. For each of these states, we
consider the possible executions with the intention to find one corresponding to an attack.

Moreover, the tree has to be updated for each step Rp → Sp to be treated. We assume that
we are at the level i of the constraints tree. For each state of the level i, we focus on constraints
corresponding to the current step and coherent with constraints related to the current state of
the level i. Once the Intruder is able to compose message(s) looking like the message Rp, we can
generate different alternatives for the constraints matching this (these) message(s) to the message
Rp expected by the honest participant. Since these constraints can be different alternatives to
form the message expected, they can be eventually represented by different states at the level
i + 1. Let us note the set of the constraints representing an eventual state of the level i + 1 as
scc. While updating the constraints tree, we have to distinguish different cases:

– Constraints of scc do not contain variables that already exist in a previous level relating the
root to the direct parent. In this case, we may just save the information that this variable
(the message in general) has to be generated from a certain set of knowledge (the current set
of the Intruder knowledge). This information would be useful whenever another lower level
use the same variable.

– Constraints of scc contain variables that already exists in a previous level relating the root
to the direct parent. In this case, there are two possibilities:
• Constraints of scc are incoherent with those of parents (constraints that exist between

the direct parent (current state of the level i) and the root (alternative of the violation
of the security property)). In this case, we do not add this state to the (i + 1)-th level.

• Constraints of scc are coherent with these of upper parents. In this case, we maintain
these constraints scc as a possible son of the state at the level i + 1.
Besides, if the constrains of this possible state contains one constraint that already exists
in previous states or may be deduced by transition, we may omit it in order to get rid of
redundancy.
Moreover, if a constraint of scc manage variables that already exist in V (already have
values) and relating them to variables that are not yet in V , this constraint is replaced
by a new one connecting the new variable to its value (by transition).

7 Intruder Knowledge Management

In our method for flaws detection we assume that our Intruder follows the most referred Intruder’s
model: the Dolev-Yao’s model [7]. In this model, the Intruder has the entire control of the
communication network. That is to say that the Intruder can intercept, record, modify, compose,
send, encrypt and decrypt (if he has the appropriate key) each message. He has also the possibility
to send faked messages in the name of another participant. Since he has such capabilities, the
Intruder has to manage information he acquires from each step. We note the set of his knowledge

S. This set is defined as the set of all present knowledge in its maximality decomposed form.
From the beginning of a protocol’s execution, the Intruder knows some information. Terms
composing these information constitute the set of his initial knowledge S0. Then, initially, S = S0.
Throughout an execution, the set of the Intruder’s knowledge has to be updated for each step
treated. We distinguish two kinds of updates: when the Intruder has to compose a message(s)
having the same pattern as the message expected by an honest participant, and when he gets
some new information (as response from an honest participant).

Operation Composition Rules Decomposition Rules

Fresh
k

, k /∈ K ∪ A ∪ S

Concatenation
m1 m2

< m1, m2 >

< m1, m2 >

m1
,

< m1, m2 >

m2

Asymmetric Encryption
m k

{m}p

k

{m}p

k inv(k)

m

Symmetric Encryption
m b

{m}s
b

{m}s
b b

m

Product
x y

x.y

x.y y−1

x

Inverse
y

y−1

y−1

y = {y−1}−1

Exponentiation
t α

αt

αx.y y−1

αx

Table 1. Rules of the Intruder’s terms composition and decomposition

In the first case, we are treating the step Rp → Sp where the Intruder has to build a mes-
sage(s) suiting the pattern of the message expected by an honest participant (Rp). To do this,
the Intruder follows composition rules defined in the first part of the Table 1.
In the second case, since all the messages sent by the participants acting in the protocol are
sent to the Intruder, the last one has the possibility to decompose the message received by using
terms already existing in S at this moment. This set S can also contain terms that have not
yet be decomposed because some information was missing. Therefore, from information deduced
from the last message received, the Intruder can decompose terms in S. In order to decompose
terms, the Intruder follows decomposition rules defined in the second part of the Table 1.
We return now to our running example. In this paragraph, we consider the following execution’s
order (<e): p111 <e p212 <e p211 <e p112 <e p121 <e p222 <e p221 <e p122 <e p131 <e p232

The aim of the Intruder is to build the patterns of the messages expected by the honest partici-
pants. We notice that to fulfill this goal, we need to manage the Intruder’s knowledge whenever
he gets a new information (that comes from a message received). For each message expected
(taking into account the execution’s order), the Intruder build every message that looks like the
pattern of the message in question. By application of the Flaws Detection method to our example
of the Asokan-Ginzboorg protocol, we find the constraints expressed in Table 2.

While solving the constraints system listed in Table 2 with the one of Section 4 (the one of
the security property to verify) we find this solution: x10 = x6 = S21, x2 = R2, x7 = S22, x12 =
E1, x13 = x3 = S12, x5 = E2, x9 = R1and x14 = S11.
The instantiation of variables in the execution by the values found above gives us the execution’s
trace of Figure 1.

At the end of this execution’s trace, we have: Alg11 6= Alg21 and Alg12 6= Alg22. Thus, the
group key agrement is violated for each one of the two sessions.

1 x5 = E1 or x5 = E2

2 x12 = E1 or x12 = E2

3 x2 = R1, x3 = S21, E1 = x5 or x2 = R2, x3 = S12, E1 = x12

4 x9 = R1, x10 = S21, E2 = x5 or x9 = R2, x10 = S12, E2 = x12

5 x6 = x3, x7 = S11, x2 = R1 or x6 = x10, x7 = S22, x9 = R1

6 x13 = x3, x14 = S11, x2 = R2 or x13 = x10, x14 = S22, x9 = R2

7 x3 = S21, x6 = S21, x7 = S11 or x3 = x13, x3 = S12, x14 = S11

8 x10 = S21, x6 = S21, x7 = S22 or x10 = S12, x13 = S12, x14 = S22

Table 2. Constraints for the Asokan-Ginzboorg protocol

p111 : i −→ A1 : Init
A1 −→ i A1, {E1}P

p212 : i −→ A2 : Init
A2 −→ i A2, {E2}P

p211 : i −→ A2 : x4, {E2}P

A2 −→ i A2, {R1, S21}E2

p112 : i −→ A1 : x11, {E1}P

A1 −→ i A1, {R2, S12}E1

p121 : i −→ A1 : x1, {R2, S12}E1

A1 −→ i {S12, S11}R2

p222 : i −→ A2 : x8, {R1, S21}E2

A2 −→ i {S21, S22}R1

p121 : i −→ A2 : {S21, S22}R1

A2 −→ i A2, {S21, H(S21, S22)}F (S21,S22), Alg21 = F(S21,S22)
p122 : i −→ A1 : {S12, S11}R2

A1 −→ i A1, {S12, H(S12, S11)}F (S12,S11), Alg22 = F(S12,S11)
p131 : i −→ A1 : x1, {S12, H(S12, S11)}F (S12,S11), Alg11 = F(S12,S11)
p232 : i −→ A2 : x8, {S21, H(S21, S22)}F (S21,S22), Alg12 = F(S21,S22)

Fig. 1. Execution’s trace

8 Verification Results

By applying the strategy described in previous sections, we have found two authentication attacks
for the protocol GDH.2 with 4 participants (attacking resp. participant A3 and A4) (See Figures 2
and 3). These Figures show either the normal execution of the protocol and the message to be
changed in order to lead to an attack. In this section, we generalize these results to the GDH.2
with n participants and to the protocol A-GDH.2.

8.1 The GDH.2 protocol

Consider the GDH.2 [9] protocol with n participants (A1, ..., An). The Intruder can have the point
of vue of the group key of the last member. Indeed, he intercepts the last message intended for the
last participant (x1, ..., xn−1, xn) and alters the last component (xn) by replacing it by any compo-
nent of the last message varying from x1 to xn−1. When receiving the message expected, the last
participant An exponentiates the components x1...xn−1 by Rn and send them to the other partic-
ipants. The Intruder can then get the information varying from Exp(x1, Rn) to Exp(xn−1, Rn).

A2A1
α, αR1

αR2R3R4 , αR1R3R4 , αR1R2R3

αR2 , αR1, αR1R2

A3

A4

αR2R3 , αR1R3

αR1R2 , αR1R2R3

Alg4 = αR2R3R4

αR2R3

Fig. 2. First authentication attack for GDH.2

A2A1
α, αR1

αR2R3R4 , αR1R3R4 , αR1R2R4

αR2 , αR1, αR1R2

A3

A4

αR2R3 , αR1R3

αR1R2 , αR1R2R3

Alg3 6= Alg4

αR2

: Alg3 = αR2R3

Alg4 = αR1R2R3R4

Fig. 3. Second authentication attack for GDH.2

Then, An uses the last component xn in order to deduce the group key by exponentiating this by
Rn. This key from the point of vue of the last member is then Algn = Exp(xn, Rn). Thus, if the
Intruder replaces xn by a message xi from x1 to xn−1, the last participant deduces as group key
Exp(xi, Rn). Nevertheless, this information is already available on the network and then known
by the intruder.

The aim of the Intruder is now to have the point of vue of the group key of an intermediate
participant Ai varying from A1 to An−1. Ai deduces his key from the last message he received
(X) from An where X = x1, .., xn−1. Since his group key will contain a private information: Ri,
the Intruder has to make so that Ai generates for key of group a message which was transmitted
before and which contains private information Ri. These messages are accessible to the intruder
at the time of the first round of the protocol: when the members (in particular, intermediate
members) are invited to give their contributions by exponentiating the messages received by the
Ri. At the step pi, Ai receives a message of form x11, .., x1i. In the message to be sent by Ai

during this step, we find all the components x1j (varying from x11 to x1i) exponentiated by Ri.
We assume now that, for an i ∈ {1, n−1}, for the message X = x1, .., xi, ..., xn−1, xi is one of the
components x11, .., x1i. The participant Ai, while receiving X , takes his correspondent component
xi and generates his key by exponentiating it by Ri. Thus, Algi = Exp(xi, Ri). Nevertheless, the
Intruder got already the information Exp(xi, Ri) from the step pi.

8.2 The A-GDH.2 protocol

Consider the A-GDH.2 [9] protocol with n participants (A1, ..., An) where the Intruder is one of
the participants and has as raw i (I = Ai). The Intruder focus on the last message expected by the
last participant. This message X is composed of n components X = x1...xn. The last participant
exponentiates the (n-1) components of this message by Rn and the key of the corespondent
participant. Thus, the component xi is exponentiated by RnKni. Instead of sending the message
X = x1, ..., xi, ..., xn to An, the Intruder send the message X = x1, ..., xi, ..., xi. As response to
this message, An sends the message
X’ = Exp(Exp(x1, Rn), Kn1), ..., Exp(Exp(xi, Rn), Kni), ..., Exp(Exp(xn−1, Rn), Kn(n−1))
and deduces as group key Exp(xi, Rn) as xn = xi. From the message X ′, the Intruder gets
the component Exp(Exp(xi, Rn)Kni). He knows then Exp(xi, Rn) = Exp(xn, Rn). Thus, he
has the point of vue of the group key of the participant An. Moreover, for the other group
members, as the Intruder does not alter the rest of the normal protocol’s execution, he shares the
same expected group key with the rest of the group (apart from An) Exp(Exp(x1, Rn), R1) =
Exp(Exp(xi, Rn), Ri) = Exp(Exp(xn−1, Rn), Rn−1). The Intruder succeed then to divide the
group on two parts and has the two points of view of the group key of the two parties.

9 Related Work

The verification of group protocols is a research topic on which there has been and there is still
a lot of work. This is mainly due to the wide range of specific requirements imposed by this
kind of protocols. Varying from an unbounded number of participants to very particular security
properties, considering all those requirements is a real challenge, both theoretical and practical.
Either modelling and verifying group protocols and their properties are very difficult.

It exists various research activities to formally specify group protocols and their specific
requirements. For instance, Capsl has been extended to MuCapsl [6]. This language is to be
translated to a multiset term rewriting rules (MuCIL) which is an extension of CIL in order to
support multicast group management protocols. However, we only model the security property
of secrecy.
In a recent work [5], Delicata and Schneider present a framework for reasoning about secrecy in a
class of Diffie-Hellman protocols. The technique, which shares a conceptual origin with the idea
of a rank function, uses the notion of a message-template to determine whether a given value is
generable by an intruder in a protocol model. This work focus only on the security protocol of
secrecy. Then, it is less general than Pereira’s work as it deals with a sub class of Diffie-Hellman
protocols (it claims the condition of I/O independence).

In the verification process, after the first step: the specification of either the protocol and the
property, there is a more delicate step which is the verification step. It exists various research
activities oriented on this task varying from manual methods to automatic ones. They lead to
the discovery of several attacks that will be introduced in this section.

One of the most interesting techniques done by hand is suggested by Pereira and Quisquater
in [9]. They have introduced a method converting the problem of ownership of some information
by the intruder to a problem of resolution of a system of linear equations. With this method,
several attacks have been found in the protocols suite CLIQUES [9]. This method has also
permitted to get a generic result: it is impossible to design an authentication group key agreement
protocol built on A-GDH for a number of participants greater than or equal to four [10]. Although
this method is of great interest for analysing group protocols, its main drawback is that it has
to be run by hand for discovering attacks.

Additionally, some tools have been extended in order to deal with the new requirements of
group protocols. Significant attacks on such protocols have been found. In [12], Taghdiri and
Jackson have modelled a multicast group key management protocol proposed by Tanaka and
Sato [13]. They have been able to discover counterexamples to supposed properties. They have
then proposed an improved protocol. However, in their model, no active attacker was included.
Their improved protocol has been analyzed in [11] by CORAL and two serious attacks have
been found. CORAL has also been used to discover other attacks concerning two protocols:
Asokan-Ginzboorg and Iolus.

10 Summary and future work

Throughout this paper, we have presented a new strategy for dealing with group protocols and
more generally contributed ones. The approach hinges around the use of the services driven
model to deduce constraints related to the security property to verify. These constraints will be
used with the protocol’s execution constraints to obtain an attack execution’s trace if it exists.
This strategy permits to pinpoint new attacks in three different protocols. From these attacks,
we have generalized the result to two protocols with n participants.

This work is nascent, but we are currently applying it to other protocols and to other security
properties. We also plan to study the complexity of the suggested algorithm.

Since the analysis of a great number of protocols is generally done by automatic tools, we in-
tend either to implement our strategy or to extend existing automatic tools that are based on
constraints solving. Among these tools, we find Atse, one of four back-ends used in AVISPA [1],
a tool that has already treated a large number of Internet security protocols. Its expressive pro-
tocol specification language permits, modulo some extensions, to model contributed protocols
and their intended security properties. Since our basic constraints are based on equality and
inequality constraints, they may be seen as booleen constraints and then the whole constraints
can be considered as SAT constraints. Thus, we may integrate a SAT-solver in our solution.
The suggested approach can also be developed to consider another kind of group protocols such as
hierarchical protocols that present additional verification constraints. Indeed, we have to extend
the services driven model to deal with this kind of protocols.

References

1. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Hankes Drielsma,
P.-C. Héam, J. Mantovani, S. Mödersheim, D. von Oheimb, M. Rusinowitch, J. Santos Santiago,
M. Turuani, L. Viganò, and L. Vigneron. The AVISPA Tool for the automated validation of internet
security protocols and applications. In K. Etessami and S. Rajamani, editors, 17th International

Conference on Computer Aided Verification, CAV’2005, volume 3576 of Lecture Notes in Computer

Science, Edinburgh, Scotland, 2005. Springer.
2. N. Asokan and P. Ginzboorg. Key Agreement in ad hoc Networks. Computer Communications,

23(17):1627–1637, 2000.
3. Y. Chevalier and L. Vigneron. Strategy for Verifying Security Protocols with Unbounded Message

Size. Journal of Automated Software Engineering, 11(2):141–166, 4 2004.
4. N. Chridi and L. Vigneron. Modélisation des propriétés de sécurité de protocoles de groupe. In Actes

du 1 er Colloque sur les Risques et la Sécurité d’Internet et des Systèmes, pages 119–132, Bourges,
France, October 2005. CRISIS.

5. R. Delicata and S. Schneider. A formal approach for reasoning about a class of diffie-hellman
protocols. In Formal Aspects in Security and Trust, pages 34–46, 2005.

6. G. Denker and J. Millen. Modeling group communication protocols using multiset term rewriting,
2002.

7. D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on Information

Theory, 29(2):198–207, 1983.
8. H. Hassan, A. Bouabdallah, H. Bettahar, and Y. Challal. Hi-kd: Hash-based hierarchical key distri-

bution for group communication - ieee infocom poster, 2005.
9. O. Pereira. Modelling and Security Analysis of Authenticated Group Key Agreement Protocols. PhD

thesis, Universit catholique de Louvain, May 2003.
10. O. Pereira and J.-J. Quisquater. Generic Insecurity of Cliques-Type Authenticated Group Key

Agreement Protocols. In 17th IEEE Computer Security Foundation Workshop, CSFW, pages 16–19,
Pacific Grove, CA, 2004. IEEE Computer Society.

11. G. Steel and A. Bundy. Attacking group multicast key management protocols using coral. Electr.

Notes Theor. Comput. Sci., 125(1):125–144, 2005.
12. M. Taghdiri and D. Jackson. A Lightweight Formal Analysis of a Multicast Key Management

Scheme. In Formal Techniques for Networked and Distributed Systems, FORTE, volume 2767, pages
240–256, Berlin, Germany, 2003. Springer.

13. S. Tanaka and F. Sato. A Key Distribution and Rekeying Framework with Totally Ordered Multicast
Protocols. In 15thon Information Networking, ICOIN, pages 831–838, Beppu City, Japan, 2001.
IEEE Computer Society.

14. C. Wong, M. Gouda, and S. Lam. Secure group communications using key graphs. In Proceedings of

the ACM SIGCOMM ’98 conference on Applications, technologies, architectures, and protocols for

computer communication, pages 68–79, 1998.

	Requirements for Constraint Solvers in Verification of Data-Intensive Embedded System Software
	Qiang Fu, Maurice Bruynooghe, Gerda Janssens, and Francky Catthoor

