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Abstract. Esterel is a design language for the specification of real time
embedded systems. Based on the synchronous concurrency paradigm,
its semantics describes execution as a succession of instants of compu-
tation. In this work, we consider the introduction of a new setpause

instruction in the language, which acts as a non-instantaneous jump
instruction compatible with concurrency. It allows the programmer to
activate state control points anywhere in the program, from where the
execution is resumed in the next instant. In order to provide the formal
semantics of the extended language, we first define a state semantics of
Esterel, which we prove observationally equivalent to the original logical
behavioral semantics. Including setpause in the state semantics is then
straightforward. We sketch two key applications of our new primitive:
a direct encoding of automata and a quasi-linear rewriting of programs
eliminating schizophrenic behaviors.

1 Introduction

Esterel [4–8] is a high-level control-oriented synchronous reactive language (Sec-
tion 2). Sophisticated control-flow patterns can be built through sequential and
parallel compositions of behaviors, tests, loops and preemption mechanisms.
These are all structural statements. No jump instruction is available or easily
encoded in Esterel. This has important drawbacks, such as making flat automata
encoding unnaturally difficult [1]. As a consequence, the opportunity of adding
a goto-like construct to the language is a subject of debate.

On one hand, such an extension would produce a more expressive language,
allowing more compact specifications, with an enhanced support for automata.
Moreover, most compilers [4, 9, 10, 15] for Esterel are based on intermediate for-
mats, languages or representations that involve jumps so that the implementa-
tion of this instruction should be straightforward.

On the other hand, gotos are widely regarded as a bad idea, especially in a
concurrent framework such as Esterel, where they can easily break the semantics.
In addition, specific correctness issues such as instantaneous loop detection [17]
could become much worse because of gotos.

Thus, to the best of our knowledge, no successful attempt of extension in this
direction has been reported that provides both the necessary formal background
and convincing practical applications.



pause1;

action 1;
present A then setpause2 end;

present B then setpause3 end;

setpause1;

pause2;

action 2;
setpause1;

pause3;

action 3;
setpause2
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Fig. 1. Automata in Esterelsp

In this paper, we detail what we believe is the right way to extend Esterel. We
add to the language an instruction we call setpause. Both setpause and pause
instructions are now labeled. When the control reaches setpauselabel, it stops
for the current instant, as if it had reached a regular pause instruction. However,
when the execution is resumed in the following instant, instead of restarting from
the setpauselabel location, it starts from the corresponding pauselabel location.
This allows to branch non-instantly to a remote section of the program.

Thanks to non-instantaneity, the semantics remains simple enough to be
defined and proved to be adequate, as well as understood and used!

Because of the non-locality of branching, such an extension usually requires
some kind of continuation-passing style semantics. In the case of Esterel, we
first have to reformulate the standard logical behavioral semantics [4, 17] in the
form of a state semantics that we prove observationally equivalent (Section 3).
Then, we introduce and formalize setpause and the semantics of the extended
language, which we note Esterelsp (Section 4).

Automata made of non-instantaneous transitions are now easily encoded with
conditional jumps, as shown by the example of Figure 1. More importantly,
quasi-linear reincarnation [4, 13, 16] can be achieved by a simple preprocessing
in Esterelsp (Section 5).

2 The Pure Esterel Kernel Language

Esterel [4–8] is an imperative synchronous programming language dedicated to
reactive systems [11, 12]. Pure Esterel is the fragment of the full Esterel language
where data variables and data-handling primitives are discarded. As our only
concern is with control-flow primitives, we concentrate in this paper on Pure
Esterel. Moreover, without loss of generality, we focus on the Pure Esterel kernel
language as defined by Berry in [4], which retains just enough of the language
syntax to attain its full expressive power. Finally, for lack of space, we do not
consider the statement suspend in the sequel. It raises no particular problem.



p, q ::= nothing does nothing
pause retains the control until next tick
signal S in p end declares signal S in p
emit S emits S (i.e. S is present)
present S then p else q end if S is present then does p else does q
trap T in p end declares and catches exception T in p
exit T raises exception T which propagates upward

p; q

{
first starts p, then q if/when p terminates
terminates if/when q does

[p || q]

{
starts p in parallel with q
terminates when both p and q are done

loop p end repeats p forever

Fig. 2. Pure Esterel

Figure 2 describes the grammar of programs in this language, as well as the
intuitive behavior of its constructs. An Esterel program runs in steps called
reactions in response to the ticks of a global clock. Each reaction takes one in-
stant. When the clock ticks, a reaction occurs. It may either finish the execution
instantly or delay (part of) it till the next tick, because of pause instructions.

“emit A; pause; emit B; emit C; pause; emit D” emits the signal A in
the first instant of its execution, then emits B and C in the second instant, then
emits D and terminates in the third instant. It takes three instants to complete,
or in other words, proceeds by three reactions.

Sequences, tests and (infinite) loops are the usual control-flow operators.
Execution propagates in parallel branches in a deterministic synchronous way.
“emit A;[pause;emit B;pause;emit D || emit C;pause;emit E];emit F”
emits A and C, then B and E, and finally D and F.

Instantly broadcast signals and exceptions provide ways of interaction with
the environment (through free identifiers) as well as local communication chan-
nels (through identifiers lexically scoped by signal and trap instructions).

An Esterel program p has a tree structure. Three nodes have more than
one child: the test (of presence), sequence and parallel nodes. Thus, two disjoint
sub-terms q and r of p are connected through one of these three operators. We
note “q//r” and say that q and r are compatible if q and r are non-disjoint or
composed in parallel; we note “q#r” and say that q and r are exclusive otherwise.
For example, in “p;[q||r]”, p and q are exclusive, p and r are exclusive, q and
r are compatible.

3 From Logical Behavioral to State Behavioral Semantics

In the sequel, we consider a family of semantics for Esterel. Reactions of a term p
are specified in a structural operational style [14] by a labeled transition system:

p
E′, k−−−→

E
p′



The terms p and p′ will either be programs or states (cf. Section 3.4). We call
domain of the semantics the set of terms p it applies to. The sets E of present
signals and E′ of emitted signals encode1 the I/Os of the reaction. The integer
k is the completion code of the reaction and the term p′ its residual:

– If k = 1 then this reaction does not complete the execution of p.
It has to be continued by the execution of p′ in the next instant.

– If k 6= 1 then this reaction ends the execution of p (p′ is never executed):
• k = 0 if the execution completes normally,
• k = kT if exception T escapes from p, aborting the execution2.

In general, a term p may admit zero, one or many possible reactions and thus
executions. An execution is a potentially infinite chain of reactions such that all
completion codes but the last one are equal to 1:

p
E′

1, 1−−−→
E1

p1
E′

2, 1−−−→
E2

...
E′

n, k 6=1−−−−−→
En

pn or p
E′

1, 1−−−→
E1

p1
E′

2, 1−−−→
E2

...
E′

n, 1−−−→
En

...

3.1 Bisimulation and Observational Equivalence

In order to compare various semantics, we need mathematical tools: bisimulation
and observational equivalence [3]. Because the residual p′ of a reaction is irrele-
vant if k is not 1 (i.e. not further executed), we consider an ad hoc definition of
1-bisimulation in which we require p′ ∼ q′ only if k is 1.

Definition 1. 1-bisimulation. Let → and 7→ be two semantics of respective
domains P and Q. A 1-bisimulation between → and 7→ is a relation ∼ of domain
P ×Q such that:

– for all p ∈ P there exists q ∈ Q such that p ∼ q
– for all q ∈ Q there exists p ∈ P such that p ∼ q

– if p ∼ q and p
E′, k−−−→

E
p′ then there exists q′ such that

{
q |E

′, k−−−→
E

q′

k = 1 ⇒ p′ ∼ q′

– if p ∼ q and q |E
′, k−−−→
E

q′ then there exists p′ such that

{
p

E′, k−−−→
E

p′

k = 1 ⇒ p′ ∼ q′

Definition 2. Observational Equivalence. If there exists a 1-bisimulation be-
tween two semantics then these two semantics are said to be observationally
equivalent.

If → and 7→ are observationally equivalent then:

– if p
E′

1, 1−−−→
E1

p1
E′

2, 1−−−→
E2

...
E′

n, k−−−→
En

pn then ∃q : q |E
′
1, 1−−−→
E1

q1 |
E′

2, 1−−−→
E2

... |E
′
n, k−−−→
En

qn

– if p
E′

1, 1−−−→
E1

p1
E′

2, 1−−−→
E2

...
E′

n, 1−−−→
En

... then ∃q : q |E
′
1, 1−−−→
E1

q1 |
E′

2, 1−−−→
E2

... |E
′
n, 1−−−→
En

...

1 The sets I and O of input and output signals are such that E = I ∪O and E′ = O.

p reacts to inputs I with outputs O, completion code k and residual p′ iff p
O, k−−−→
I∪O

p′.
2 Exceptions are numbered in the usual way [4], kT ≥ 2 being the code of exception T .



3.2 Logical Behavioral Semantics

In Figure 3, we define a class of logical behavioral semantics for Esterel, using
the auxiliary function δ as a parameter. We note → the usual Logical Behav-
ioral Semantics [17] obtained by setting δ equal to the identity. We note 7→ the
semantics corresponding to the alternate definition of δ:

δk(p) =
{
nothing if k 6= 1
p if k = 1

(1) nothing
∅, 0−−→
E

nothing
S ∈ E p

E′, k−−−→
E

p′

present S then p else q end
E′, k−−−→

E
p′

(7)

(2) pause
∅, 1−−→
E

nothing
S /∈ E q

F ′, l−−−→
E

q′

present S then p else q end
F ′, l−−−→

E
q′

(8)

(3) exit T
∅, kT−−−→

E
nothing

p
E′, k−−−→

E
p′ k = 0 or k = kT

trap T in p end
E′, 0−−−→

E
nothing

(9)

(4) S ∈ E

emit S
{S}, 0−−−−→

E
nothing

p
E′, k−−−→

E
p′ k > 0 and k 6= kT

trap T in p end
E′, k−−−→

E
δk(trap T in p′ end)

(a)

(5)
p

E′, k−−−→
E

p′ k 6= 0

p; q
E′, k−−−→

E
δk(p′; q)

p
E′, k−−−→

E
p′ q

F ′, l−−−→
E

q′ m = max(k, l)

[p || q]
E′∪F ′, m−−−−−−→

E
δm([p′ || q′])

(b)

(6)
p

E′, 0−−−→
E

p′ q
F ′, l−−−→

E
q′

p; q
E′∪F ′, l−−−−−→

E
q′

p
E′, k−−−→

E
p′ k 6= 0

loop p end
E′, k−−−→

E
δk(p′; loop p end)

(c)

(d)

p
E′, k−−−−→

E∪{S}
p′ S ∈ E′

signal S in p end
E′\{S}, k−−−−−−→

E
δk(signal S in p′ end)

(e)

p
E′, k−−−−→

E\{S}
p′ S /∈ E′

signal S in p end
E′, k−−−→

E
δk(signal S in p′ end)

Fig. 3. Logical Behavioral Semantics

While matching the original semantics in term of observational equivalence,
our alternate version of the semantics enjoys an extra normalization property.
It maps completed or aborted executions to nothing.



Theorem 1. Equivalence. → and 7→ are observationally equivalent.

Proof (1). By defining a 1-bisimulation between → and 7→.

Theorem 2. Normalization. If p |E
′, k−−−→
E

p′ and k 6= 1 then p′ is nothing.

For example,

 [nothing || nothing] ∅, 0−−→
E

[nothing || nothing]

[nothing || nothing] |∅, 0−−→
E

nothing

Proof (2). By induction on the proof of p |E
′, k−−−→
E

p′.

These logical semantics do not lead to intuitive behaviors and efficient algo-
rithms for computing reactions, thus the need for constructive semantics [4, 18].
Intuitively, it consists in restricting the semantics to programs with determinis-
tic causal executions, i.e. non-speculative in some sense. As with Esterel, such
refinements are possible in Esterelsp but not mandatory (cf. Section 4.4).

3.3 Labeled Semantics

In the sequel, we suppose that the pause instructions of Esterel terms are labeled
by integers. We do not require labels to be unique yet. We note L(p) the set of
labels of p, for example L(pause1; emit S; pause2; pause1) = {1, 2}.

In Figure 4, we introduce a labeled semantics ◦→ for Esterel by adding a
set of labels L to the previous semantics ( 7→) as an extra component. It col-
lects the labels of the active pauses of the statement, that is to say the pause
instructions that will retain the control at the end of the reaction. For example,
“present S then pause1 else pause2 end” in the presence of S produces the
set {1}. In addition to function δ, we define γ to be used in Rule (b).

p ◦E′, k, L−−−−−→
E

p′ γk(L) =
{
∅ if k 6= 1
L if k = 1

In fact, as we will show below (cf. Section 3.4), provided that the labeling is
non-ambiguous, the set L carries enough information to characterize the residual
p′ of the reaction.

Remark Rule (b) for parallel statements. It specifies that if “pause” and
“exit T” are reached concurrently then this pause is not active. For example,
the execution of “trap T in pause1 || exit T end” leads to an empty set L.

Theorem 3. Equivalence. ∀p, E, E′, k, p′
[
p |E

′, k−−−→
E

p′ ⇔ ∃L : p ◦E′, k, L−−−−−→
E

p′
]
.

Proof (3). Except from the recursive computation of L, this new semantics does
not differ from the previous one. In particular, no hypothesis relies on L value.

Theorem 4. Completion. If p ◦E′, k, L−−−−−→
E

p′ then L ⊂ L(p) and k 6= 1 ⇔ L = ∅.
A reaction completes (k = 0) or aborts (k = kT ) an execution iff no label is set.



Proof (4). By induction on the proof of p ◦E′, k, L−−−−−→
E

p′.

Corollary 1. In Rule (6) of the labeled semantics, L is always empty.
Thus, the merging of two non-empty sets of labels can only occur in Rule (b).

(1) nothing ◦ ∅, 0, ∅−−−→
E

nothing
S ∈ E p ◦E′, k, L−−−−−→

E
p′

present S then p else q end ◦E′, k, L−−−−−→
E

p′
(7)

(2) pausel ◦ ∅, 1, {l}−−−−−→
E

nothing
S /∈ E q ◦ F ′, l, L−−−−→

E
q′

present S then p else q end ◦ F ′, l, L−−−−→
E

q′
(8)

(3) exit T ◦ ∅, kT , ∅−−−−−→
E

nothing
p ◦E′, k, L−−−−−→

E
p′ k = 0 or k = kT

trap T in p end ◦E′, 0, L−−−−−→
E

nothing

(9)

(4) S ∈ E

emit S ◦ {S}, 0, ∅−−−−−→
E

nothing

p ◦E′, k, L−−−−−→
E

p′ k > 0 and k 6= kT

trap T in p end ◦E′, k, L−−−−−→
E

δk(trap T in p′ end)
(a)

(5)
p ◦E′, k, L−−−−−→

E
p′ k 6= 0

p; q ◦E′, k, L−−−−−→
E

δk(p′; q)

p ◦E′, k, L−−−−−→
E

p′ q ◦ F ′, l, L′
−−−−−→

E
q′ m = max(k, l)

[p || q] ◦E′∪F ′, m, γm(L∪L′)−−−−−−−−−−−−−−→
E

δm([p′ || q′])
(b)

(6)
p ◦E′, 0, L−−−−−→

E
p′ q ◦ F ′, l, L′

−−−−−→
E

q′

p; q ◦E′∪F ′, l, L∪L′
−−−−−−−−−→

E
q′

p ◦E′, k, L−−−−−→
E

p′ k 6= 0

loop p end ◦E′, k, L−−−−−→
E

δk(p′; loop p end)
(c)

(d)

p ◦E′, k, L−−−−−→
E∪{S}

p′ S ∈ E′

signal S in p end ◦E′\{S}, k, L−−−−−−−−→
E

δk(signal S in p′ end)

(e)

p ◦E′, k, L−−−−−→
E\{S}

p′ S /∈ E′

signal S in p end ◦E′, k, L−−−−−→
E

δk(signal S in p′ end)

Fig. 4. Labeled Semantics

3.4 States

By adding hats on top of some of the pause instructions of a statement p, we
obtain what we call a state of p. For example, “pause1; emit S; ̂pause2” is a
state of “pause1; emit S; pause2”. Intuitively, a state represents some possible



point3 in the execution of a program. Similar introductions of states and state
expansions are found in [4, 13].

We say that a term is well labeled iff the labels of its pause instructions are
pairwise distinct. From the combination of the well-labeled statement p and the
set of labels L, we build the state pL by selecting the pause instructions that
have a label in L. For example, “(pause1; emit S; pause2){2,3}” is the state
“pause1; emit S; ̂pause2”. In the sequel, we will use either representation, as
convenient. From now on, we note pL only if p is well labeled. On the other hand,
as in previous example, L is not supposed to be a subset of L(p).

We remark that p is both a statement and a state (of the statement p itself),
further referred as the inactive state of p, as no pause is selected. We say that
pL is a valid state of p iff pL is either the inactive state or some active state p̂ of
p, that is to say a state that conforms to the grammar of Figure 5. In particular,
an active state has at least one pause selected.

p̂ ::= ̂pausel ε−→ nothing

p̂; q
ε−→ ε(p̂); q

p; q̂
ε−→ ε(q̂)

present S then p̂ else q end
ε−→ ε(p̂)

present S then p else q̂ end
ε−→ ε(q̂)

trap T in p̂ end
ε−→ trap T in ε(p̂) end

p̂ || q̂
ε−→ ε(p̂) || ε(q̂)

p̂ || q
ε−→ ε(p̂) || nothing

p || q̂
ε−→ nothing || ε(q̂)

loop p̂ end
ε−→ ε(p̂); loop p end

signal S in p̂ end
ε−→ signal S in ε(p̂) end

Fig. 5. Active States and their Expansion

Intuitively, invalid states are states that cannot be reached in the execution
of the program4. For example, “ ̂pause1; ̂pause2” is not a valid state. A state is
valid iff pause instructions are not selected in both branches of a test or both
parts of a sequence, i.e. iff selected pause instructions are pairwise compatible.

3.5 State Expansion

In Figure 5, we also define a state expansion function ε. It derives a statement
from an active state. Let ε(p) be nothing for inactive states. This extends ε to
valid states.

3 We will use states to represent starting and ending points of reactions.
However, micro-steps within a reaction cannot be represented by states.

4 Valid states are not always reachable! [ ̂pause1||pause2] is both valid and unreachable.



The expansion retains labels. We observe that even if pL is a valid state (of
the well-labeled term p), the labeled term ε(pL) is not necessarily well labeled,
as loop unrolling may occur. For example,

ε(loop pause1; pause2 end) = nothing; pause2; loop pause1; pause2 end

Theorem 5. Stability. If pL is valid and ε(pL) ◦E′, k, L′

−−−−−→
E

p′ then pL′
is valid.

Proof (5). If k ∈ L′, l ∈ L′ then there exists two compatible occurrences
of pausek and pausel in ε(pL) by Corollary 1. Thus, pausek and pausel are
compatible in p, as the expansion does not introduce parallel operators.

Theorem 6. Expansion. If p is well labeled and p ◦E′, k, L−−−−−→
E

p′ then ε(pL) = p′.

Proof (6). Obvious if k 6= 1 else by induction on the proof of p ◦E′, k, L−−−−−→
E

p′.

This proves that p′ can be rebuild from L (and p). The result of the reaction
is equivalently characterized by either the residual p′ (as defined by the logical
behavioral semantics) or the state pL we have just introduced. This is the key
that enables the definition of a state semantics for Esterel in the following section.

3.6 State Behavioral Semantics

We define our state behavioral semantics ↪→ of Esterel as follows:

for all pL valid, E, E′, k, L′, we note pL ↪
E′, k−−−→

E
pL′

iff ∃p′ : ε(pL) ◦E′, k, L′

−−−−−→
E

p′.

One reaction of the well-labeled term p in the valid state pL produces the
valid state pL′

(Theorem 5) iff L′ is the set of active labels computed by the
labeled semantics for the term ε(pL) (being well labeled or not).

Theorem 7. Equivalence. 7→ and ↪→ are observationally equivalent.

Proof (7). Let ∼ be the relation: pL ∼ q iff ε(pL) = q or ε(pL) = nothing; q.
This relation is a 1-bisimulation between ↪→ and 7→. In particular,

pL ↪
E′

1, 1−−−→
E1

pL1 ↪
E′

2, 1−−−→
E2

... ↪
E′

n, k−−−→
En

pLn ⇔ ε(pL) |E
′
1, 1−−−→
E1

ε(pL1) |E
′
2, 1−−−→
E2

... |E
′
n, k−−−→
En

ε(pLn)

State semantics for Esterel have already been proposed [4, 13]. As usual, our
semantics describes the execution of a program in term of “moving hats”:

̂pause; [pause||pause] ↪
∅, 1−−→
E

pause; [ ̂pause|| ̂pause] ↪
∅, 0−−→
E

pause; [pause||pause]



But this new definition remains very close to the logical behavioral semantics.
The progression of the execution “within the instant” is still handled by the
logical semantics, which makes the proof of Theorem 7 tractable.

Our state semantics is nevertheless different from the logical semantics in the
way it chains reactions. Instead of resuming from the logical residual p′ of the
previous reaction, the execution is restarted from the (expansion of) the state
pL′

that was also computed.
In other words, our labeled semantics is a combination of a logical behavioral

semantics, which takes care of the current instant of execution, and of a state
computation (the set of labels), which prepares for the next instant of execution.

While up to now these two computations (p′ and L′) coincide in the labeled
semantics (Theorem 6), the fact extra labels may be inserted into L′ without
modifying p′ makes the addition of setpause to the language possible.

4 Introducing setpause in Esterel

We now extend Esterel syntax with the instruction setpausel for any integer
label l. We note Esterelsp for the extended language. We would like this new
construct to behave as follows:

̂pause1; setpause2; emit S; pause2 ↪
∅, 1−−→
E

pause1; setpause2; emit S; ̂pause2

– the hat first moves from pause1 to setpause2 since the term obtained by
replacing setpause by pause instructions with fresh labels reacts as follows:

̂pause1; pause3; emit S; pause2 ↪
∅, 1−−→
E

pause1; ̂pause3; emit S; pause2

– the hat then jumps from pause3 ≡ setpause2 to pause2, as hats on top of
setpausel instructions are removed and moved to the corresponding pausel

instructions at the end of the instant.

This is more or less what we formalize below. But this intuitive algorithm
breaks on more complex programs. In the following example, whereas the initial
state p{1} is valid, the derived state p{2,3} is not!

̂pause1; [setpause2||pause3]; pause2 ↪
∅, 1−−→
E

pause1; [setpause2|| ̂pause3]; ̂pause2

While the execution of the program is supposed to be continued (k = 1),
it cannot be since ε(pause1; [setpause2|| ̂pause3]; ̂pause2) is undefined. Such a
state does not make sense with respect to Esterel (state) semantics. As a conse-
quence, “pause1; [setpause2||pause3]; pause2” cannot be considered to be a cor-
rect program. This is dealt with through a proper definition of well-formedness,
which ensures that setpause occurrences are compatible with Esterel concur-
rency.



4.1 Well-Formedness

Definition 3. Well-formedness. A well-labeled program p is well formed iff:

∀k,∀l : pausek#pausel ⇒

setpausek # setpausel

setpausek # pausel

pausek # setpausel

If pausek and pausel are exclusive then their respective “triggers” have to
be exclusive, too. This purely static (syntactic) condition can be checked easily
while building the abstract syntax tree of a program. Of course, every well-
labeled Esterel program is a well-formed Esterelsp program.

4.2 Labeled Semantics

We build the labeled semantics of Esterelsp by adding a rule for setpause to
the labeled semantics of Esterel (Figure 4):

setpausel ◦ ∅, 1, {l}−−−−−→
E

nothing

States and state expansion retain their definitions in Esterelsp. For example,
‘(setpause1; emit S; pause1; pause2){1}’ is ‘setpause1; emit S; ̂pause1; pause2’
and ε(setpause1; emit S; ̂pause1; pause2) = nothing; pause2.

Theorem 8. Stability. If p is well formed and ε(pL)◦E′, k, L′

−−−−−→
E

p′ then pL′
is valid.

Proof (8). Similarly to Proof 5, if k ∈ L′, l ∈ L′ then there exists two compatible
occurrences of (set)pausek and (set)pausel in ε(pL) by Corollary 1 (which
remains valid). Thus, by definition of ε, there exists two compatible occurrences
of (set)pausek and (set)pausel in p. As a consequence, by definition of well-
formedness, pausek and pausel are compatible in p.

4.3 State Semantics

We now define the state semantics of Esterelsp. For all p well formed, pL valid,

∀E,E′, k, L′, we note pL ↪
E′, k−−−→

E
pL′

iff ∃p′ : ε(pL) ◦E′, k, L′

−−−−−→
E

p′.

Thanks to Theorem 8, this semantics is well defined on the domain of valid
states over well-formed programs. Of course, in Esterelsp, Theorem 6 no longer
holds: ε(pL′

) is not p′. This times we are really using L′.
This formalizes our naive semantics: (i) setpause behaves just as pause

during the reaction, (ii) as the definition of the expansion ε remains unchanged,
both setpausel and pausel potentially activate pausel by inserting l into L′.

We remark that, for a given label l, there may be several occurrences of
setpausel in p or there may be no pausel even if there is one setpausel. This
is fine. Simultaneous jumps to the same target make sense. Although “goto
nowhere” should probably be forbidden in practice, it is semantically harmless.

This state semantics of Esterelsp is adequate: its restriction to programs of
the original Esterel language (i.e. the state semantics of Section 3.6) is observa-
tionally equivalent to the initial semantics of Esterel, by Theorems 1 and 7.



4.4 Constructive Semantics

For lack of space we only briefly sketch the constructive semantics of Esterelsp.
Esterel constructive semantics is essentially a way to get around the issue of the
overlapping between Rules (d) and (e) of the logical behavioral semantics [4, 18],
which are both applicable to some programs. For example,

signal S in present S then...
...emit S else pause end end


∅, 0−−−→
∅

signal S in nothing end

∅, 1−−−→
∅

signal S in nothing end

It can be obtained by defining two exclusive predicates Must and Cannot,
used for disambiguation. The condition “S ∈ E′” of Rule (d) and “S /∈ E′” of
Rule (e) are respectively replaced by “p must emit S” and “p cannot emit S”.

Let’s Must(setpausel) and Must(pausel) be defined as Must(pause) is in
Esterel. Let’s Cannot(setpausel) and Cannot(pausel) be Cannot(pause). An
identical rewriting of Rules (d) and (e) of our labeled semantics of Esterelsp

leads to an adequate constructive semantics of Esterelsp.
Intuitively, as setpause and pause instructions only differ via their non-

instantaneous effects, causality (i.e. correctness with respect to the constructive
semantics) is essentially unchanged. Of course, a causal Esterel program is
a causal Esterelsp program. Then, as the constructive and logical behavioral
semantics of causal programs match, the adequacy of this constructive semantics
of Esterelsp is a consequence of the adequacy of its state semantics.

5 Schizophrenia and Reincarnation

A well known complexity of Esterel semantics is illustrated by the infinite loop
of Figure 6. Intuitively, as the signal S is local to the loop, a fresh instance
is accessed each time the loop is entered. Thus the signal O is never emitted.
Formally, loop unrolling in the logical semantics produces two separate instances
of S, so that the emission of S never reaches the test. Although there is a single
object S in the source program, there are, in this case, two objects S involved in
each reaction (starting from the second one).

loop

signal S in

present S then emit O end;

pause;

emit S

end

end

∅, 1
------→

∅

signal S in nothing; emit S end;

loop

signal S in

present S then emit O end;

pause;

emit S

end

end

Fig. 6. Schizophrenia



loop

signal S1 in

present S1 then emit O end;

pause;

emit S1

end;

signal S2 in

present S2 then emit O end;

pause;

emit S2

end;

end

loop

signal S1 in

present S1 then emit O end;

setpause1;

emit S1 %dead code
end;

signal S2 in

present S2 then emit O end; %dead code
pause1;

emit S2

end;

end

Fig. 7. Reincarnation in Esterel and Esterelsp

Such objects and programs are said to be schizophrenic [4, 13, 16]. For reasons
beyond the scope of this paper, compiling schizophrenic programs is hard and
expensive. It is usually achieved either directly through complex and error-prone
compilation algorithms (such as thoses described in [4]) or in a two-step process:
programs being first rewritten to get rid of schizophrenic behaviors, then more
easily compiled, as in [15]. The first step is called reincarnation.

Reincarnation can be obtained by a recursive replication of loop bodies:

loop p end =.loop p; p end

Applied to our example, this method produces5 the first program of Figure 7.
Each reaction involves one instance of S1 and one of S2. The resulting program
is not schizophrenic. This algorithm however leads to a potentially exponential
growth in code size in the presence of nested loops (not illustrated here), which
is not acceptable.

Improved schemes have been proposed [15, 16] with various drawbacks such
as the need of ad hoc intermediate languages for the representation of programs,
complex rewriting rules, etc.

On the contrary, using the setpause instruction of Esterelsp, a simple and
efficient source to source transformation is possible. For a piece of a well-labeled
Esterel program p, we note p the Esterelsp code obtained by replacing the pause
instructions of p by setpause instructions, labels unchanged, and the loops by
their bodies. For example, ‘loop pause1; pause2 end’ is ‘setpause1;setpause2’.
We now consider the recursive rewriting of loops:

loop p end =.loop p; p end

It generates the second program of Figure 7. With this preprocessing, the
worst-case growth is only quadratic. Moreover, because unreachable pieces of
program are frequent (in italic in Figure 7) and may be erased (dead code), the
growth is quasi-linear in practice, which is admittedly as efficient as reincarnation
can get (as well as direct compilation of schizophrenic programs).
5 For readability, we rename the two signals S into S1 and S2.



6 Conclusion and Perspectives

We have designed setpause a new Esterel primitive and fully formalized the
extended language Esterelsp by providing an adequate state behavioral semantics
for it. While we focused in this report on a subset of Esterel, setpause can of
course be embedded in the complete language. The new construct was coded
into our prototype (full) Esterel compiler within a few hours.

With setpause, compiling Esterel becomes easier. The core compiler can
concentrate on non-schizophrenic programs, relying on the preprocessing6 of
Section 5 to get rid of schizophrenic behaviors. Compiling to Esterelsp is also
easier. We expect compilers for graphical formalisms built over Esterel such as
SyncCharts [1, 2] to take advantage of the enhanced support for automata in
Esterelsp.

We believe setpause is both powerful and simple. It has a very intuitive be-
havior and, because its action is delayed (i.e not instantly different from a regular
pause instruction), the intuition is not misleading. In particular, it cannot con-
tribute to instantaneous loops or causal cycles. Thus, it is not only convenient
for implementation purpose but can be made available to the end user.
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