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ABSTRACT
We present a formal approach to implement and certify
fault-tolerance in real-time embedded systems. The fault-
intolerant initial system consists of a set of independent pe-
riodic tasks scheduled onto a set of fail-silent processors. We
transform the tasks such that, assuming the availability of
an additional spare processor, the system tolerates one fail-
ure at a time (transient or permanent). Failure detection is
implemented using heartbeating, and failure masking using
checkpointing and roll-back. These techniques are described
and implemented by automatic program transformations on
the tasks’ programs. The proposed formal approach to fault-
tolerance by program transformation highlights the benefits
of separation of concerns and allows us to establish correct-
ness properties.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems, Real-time and embedded
systems; D.4.5 [Software]: Operating Systems, Reliability
[Checkpoint/restart, Fault-tolerance]; I.2.2 [Computing

Methodologies]: Artificial Intelligence, Automatic Pro-
gramming[Program transformation]

General Terms
Reliability, Languages.

Keywords
Fault-tolerance, Heartbeating, Checkpointing, Program trans-
formations.

1. INTRODUCTION
In most distributed embedded systems, such as automo-

tive and avionics, fault-tolerance is a crucial issue [9, 15].
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It is defined as the ability of the system to comply with its
specification despite the presence of faults in any of its com-
ponents. To achieve this goal, we rely on two means: failure
detection and failure masking. Among the two classes of
faults, hardware and software, we only address the former.
Tolerating hardware faults requires redundant hardware, be
it explicitly added by the system’s designer for this pur-
pose, or intrinsically provided by the existing parallelism of
the system. We assume that the system is equipped with
one spare processor, which runs a special monitor module,
in charge of detecting the failures in the other processors of
the system, and then masking the failure.

We achieve failure detection thanks to timeouts and the
popular so-called “push” approach [1]. We implement failure
masking with checkpointing and rollback mechanisms, which
have been addressed in many works. It involves storing the
global state of the system in a stable memory, and restor-
ing the last state upon the detection of a failure to resume
execution. There exist many implementation strategies of
checkpointing and rollback, such as user-directed, compiler-
assisted, system-level, library-supported, and so on [16, 11].
The pros and cons of these strategies are discussed in [29].

We propose a framework based on automatic program
transformations to implement fault-tolerance in distributed
embedded systems. Our starting point is a fault-intolerant
system, consisting of a set of independent periodic hard real-
time tasks scheduled onto a set of fail-silent processors. The
goal of the transformations is to obtain a system tolerant to
one hardware failure. One spare processor is initially free
of tasks: it will run a special monitor task, in charge of de-
tecting and masking failure of any other processor. Each
transformation will implement a portion of either the detec-
tion or the masking of failures.

We consider only independent tasks, so tasks take local
checkpoints periodically without any coordination with each
other. This approach allows maximum component auton-
omy for taking checkpoints and has no message overhead.
In Section 7, we report an experiment conducted with our
approach, where tasks were dependent ; for the sake of sim-
plicity, we present in this paper our approach in the context
of independent tasks.

The main benefit of our framework is the ability to for-
mally prove that the transformed system satisfies some given
real-time constraints even in the presence of one failure. The
fault-tolerance techniques that we present (checkpointing,
rollback, heartbeating, etc) are pretty standard in the OS



context. Our contribution is to study them in the context of
hard real-time tasks, to express them formally as automatic
program transformations, and to prove formal properties of
the system after the transformations. Other fault-tolerance
techniques could have been considered as well.

Section 2 gives an overview of our approach. In Section 3,
we give a formal definition for the real-time tasks and we in-
troduce a simple programming language. Section 4 presents
program transformations implementing checkpointing and
heartbeating. We present the monitor task in Section 5,
extend our approach to transient and multiple failures in
Section 6, and outline a real case study implementation in
Section 7. We finally review related work in Section 8 and
conclude in Section 9.

2. OVERVIEW
We consider a distributed embedded system consisting of

p processors plus a spare processor, a stable memory, and
I/O devices. All are connected via a communication net-
work. We assume a reliable communication and a deter-
ministic transmission time between the processors. These
features can be realized, for instance, with FlexRaytm or
CAN networks as will be mentioned in Section 6. For the
sake of clarity, we assume a zero transmission time, but our
results hold for non-zero transmission times as well.

Our failure assumption is that all the processors show
omission/crash failure behavior [15]. This means that the
processors may transiently or permanently stop responding,
but do not pollute the healthy remaining ones.

The system also has n real-time tasks that fit the task
model of [17]: all tasks are periodic and independent (i.e., no
precedence constraints). Periodic independent task set has
been preferred in many works due to its simplicity in study-
ing algorithms [22, 20]. We benefit from the same assump-
tion to establish the theory, then propose several extensions
to achieve a distributed system with dependent tasks. We
present the CyCab application to demonstrate the imple-
mentation of our automatic transformation technique. More
precisely, the program of each task has the form described
in Figure 1. This programming model is adopted by con-
trol engineers and it is appropriate for real-time and reactive
systems [14]. In particular, it has been succesfully deployed
in the flight control system of the Airbus A340 and A380
planes [5].

We do not address the issue
of distribution and scheduling
of the tasks onto the proces-
sors. Hence, for the sake of
clarity, we assume that each
processor runs one single task
(i.e., n = p). Executing more
than one task on each pro-
cessor (e.g., with a multi-rate
cyclic execution approach or

Initialize

for each period D do

Read Inputs

Compute

Update Outputs

end for each

Figure 1 Program model of
periodic real-time tasks.

static scheduling approach) is still possible however.
The task independency and single task per processor as-

sumptions may seem too restrictive and unrealistic at first
glance, but our technique can also be used with multiple
dependent tasks as long as a static scheduling approach is
exploited. Such a solution is discussed in Section 6. The
implementation in CyCab mobile vehicle deals with three
processors on which the communicating tasks are statically
distributed, and demonstrates that our technique can be

safely and efficiently used for enforcing basic fault-tolerance
properties.

Our approach deals with the programs of the tasks and
defines program transformations on them to achieve fault-
tolerance. We consider programs in compiled form at the
assembly or binary code level, which allows us to evaluate
worst case execution time (wcet). We represent these three-
address programs using a small imperative language. Since
the system contains only one redundant processor, we pro-
vide a masking of one processor failure at a time. Masking
of more than one transient processor failure at a time can be
achieved with additional spare processors (see Section 6).

The stable memory is used to store the global state of
each program. The global state provides masking of pro-
cessor failures by rolling back to this global state as soon
as a failure is detected. The stable memory also stores one
shared variable per processor, used for failure detection. The
spare processor provides the necessary hardware redundancy
and executes the monitor program for failure detection and
masking purposes. When the monitor detects a processor
failure, it rolls back to the latest local state of the faulty
processor stored in the stable memory. This failure masking
process is implemented by asynchronous checkpointing, i.e.,

processors take local checkpoints periodically without any
coordination with each other.

The two program transformations used for adding peri-
odic heartbeating / failure detection and periodic check-
pointing / rollback amounts to inserting code at specific
points. Checkpointing and heartbeating commands are in-
serted in the code at constant time intervals. The peri-
ods between checkpoints and heartbeats are chosen in order
to minimize their cost while satisfying the real-time con-
straints. A special monitoring program is also generated
from the parameters of these transformations.

The algorithmic complexity of our program transforma-
tions is linear in the size of the program. The overhead in
the transformed program is due to the fault-tolerance tech-
niques we use (heartbeating, checkpointing and rollback).
This overhead is unavoidable and compares favorably to the
overhead induced by other fault-tolerance techniques, e.g.,

hardware and software redundancy.

3. TASKS
A real-time periodic task τ = (S,D) is specified by a

program S and a period D. The program S is repeatedly
executed each D units of time. A program usually reads
its inputs (which are stored in a local variable), executes
some statements, and writes its outputs (see Figure 1). Each
task also has a deadline d ≤ D that it must satisfy when
writing its output. To simplify the presentation, we take
the deadline equal to the period but our approach does not
depend on this assumption. Hence, the real-time constraint
associated to the task (S, D) is that its program S must
terminate before the end of its period D.

Programs are expressed in the following language:

S ::= x :=A assignment
| skip no operation
| read(i) input read
| write(o) output write
| S1;S2 sequencing
| if B then S1 else S2 conditional
| for l = n1 to n2 do S iteration



where A and B represent integer expressions (arithmetic
expressions on integer variables) and boolean expressions
(comparisons, and, not, etc) respectively. Here, we assume
that the only variables used to store inputs and outputs are
i and o. These instructions could be generalized to multi-
ple reads and writes or to IO operations parameterized with
a port. This language is well-known, simple and expressive
enough. The reader may refer to [25] for a complete descrip-
tion.

The following example program Fac reads an unsigned
integer variable and places it in i. It bounds the variable
i by 10 and calculates the factorial of i, which is finally
written as output. Many real-time embedded systems have
this structure: read an input i, perform some computation f ,
and return the result f(i). Here, Fac should be seen as
a generic computation simple enough to present concisely
our techniques. Of course, as long as they are expressed
in the previous syntax, much more complex and realistic
computations could be treated as well.

Fac = read(i) ;
if i > 10 then i := 10; o := 1; else o := 1;
for l = 1 to 10 do

if l <= i then o := o ∗ l;
else skip;

write(o);

The simplest statement of the language is skip (the nop
instruction), which exists on all processors. We take the ex-
ecution time of the skip command to be the unit of time
and we assume that the execution times of all other state-
ments are multiple of the execution time of skip. A more
fundamental assumption is that the wcet of any statement
(or expression) S can be evaluated. The wcet analysis is
the topic of much work (see [28, 21] for instance); We shall
not dwell upon this issue any further.

For the remaining of the article, we fix the wcet of state-
ments to be:

wcet(x := e) = 3 wcet(skip) = 1
wcet(read) = 3 wcet(write) = 3
wcet(S1;S2) = wcet(S1) + wcet(S2)
wcet(if B then S1 else S2)

= 1 + max(wcet(S1),wcet(S2))
wcet(for l = n1 to n2 do S)

= (n2 − n1 + 1) × (3 + wcet(S))

for any “simple” expressions e or b. Using temporary vari-
ables, it is always possible to split complex arithmetic and
boolean expressions so that they remain simple enough (as
in three-address code). Note that incrementing and testing
the variable l in the for loop takes 3 time units.

With these figures, we get wcet(Fac) = 83. In the rest
of the article, we consider the task (Fac, 200), that is to say
Fac with a deadline/period of 200 time units.

The real-time property for a system of n tasks {(S1, D1),
. . . , (Sn, Dn)} is that each task must meet its deadline. Since
each processor runs a single task, it amounts to:

∀i ∈ {1, 2, ..., n}, wcet(Si) ≤ Di (1)

The semantics of a statement S is given by the function
[[S]] : State → State. A state s ∈ State maps program
variables V to their values. The semantic function takes
a statement S, an initial state s0 and yields the result-
ing state sf obtained after the execution of the statement:

[[S]]s0 = sf . Several equivalent formal definitions of [[.]] (op-
erational, denotational, axiomatic) can be found in [25]. The
IO semantics of a task (S, D) is given by a pair of streams

(i1, . . . , in, . . .), (o1, . . . , on, . . .)

where ik is the input provided by the environment during
the kth period and ok is the last output written during the
kth period. So, if several write(o) are performed during a
period, the semantics and the environment will consider only
the last one. We also assume that the environment proposes
the same input during a period: several read(i) during the
same period will result in the same readings. This property
can be enforced by reading and storing the input value in
the stable memory at the beginning of each period. For
example, if the environment proposes 2 as input then the
program

read(i); o := i; write(o); read(i); o := o ∗ i; write(o)

produces 4 as output during that same period, and not (2, 4).
Assuming N as inputs, the output of Fac is:

(0, 1!, 2!, 3!, 4!, 5!, 6!, 7!, 8!, 9!, 10!, 10!, 10!, . . .)

4. PROGRAM TRANSFORMATIONS
Failure detection and failure masking rely on inserting

heartbeating and checkpointing instructions in programs.
These instructions must be inserted such that they are exe-
cuted periodically. We therefore transform a task program
such that a heartbeat and a checkpoint are executed ev-
ery THB and TCP period of time respectively. Conditional
statements (if ) complicate this insertion. They lead to
many paths with different execution times. It is therefore
impossible to insert instructions at constant time intervals
without duplicating the code. To avoid this problem, we
first transform the program in order to fix the execution
time of all conditional and loops to their worst case execu-
tion time. Intuitively, it amounts to adding dummy code
to conditional statements. Such transformations suppose
to be able to evaluate the wcet of programs. After this
time equalization, checkpoints and heartbeats can be in-
troduced simply using the same transformation. Another
choice could have been to introduce heartbeats (resp. check-
points) at least each THB (resp. TCP ). This choice does not
require time equalization.

A transformation may increase the wcet of programs.
So, after each transformation T , the real-time constraint
wcet(T (S)) ≤ D must be checked; thanks to our assump-
tions on wcet this can be done automatically.

4.1 Equalizing execution time
Equalizing the execution time of a program consists in

padding dummy code in less expensive branches. The dummy
code added for padding is sequences of skip statements. We
write skipn to represent a sequence of n skip statements:
wcet(skipn) = n. This technique is similar to the one used
in “single path programming” [27].

The global equalization process is defined inductively by
the following transformation, noted F . The rules below
must be understood like a case expression in the program-
ming language ML [23]: cases are evaluated from top to
bottom, and the transformation rule corresponding to the



first pattern that matches the input program is performed.

F [if B then S1 else S2]

= if B then F [S1]; skip
max (0,δ2−δ1);

else F [S2]; skip
max (0,δ1−δ2);

with δi = wcet(F [Si]) for i = 1, 2
F [for l = n1 to n2 do S] = for l = n1 to n2 do F [S]
F [S1;S2] = F [S1]; F [S2]
F [S] = S otherwise

Conditionals are the only statements subject to code modi-
fication. The branch transformation adds as many skip as
needed to match the execution time of the other branch.
The most expensive branch remains unchanged. The trans-
formation is applied inductively to the statement of each
branch prior to this equalization.

It is easy to show that for any program S, the best (bcet)
and worst (wcet) case execution times of F [S] are the same.

Property 1 ∀S, bcet(F [S]) = wcet(F [S]).

In this case, the exact execution time (exet) of a program
is well-defined and equal to its bcet and wcet. Further-
more, the transformation F does not change the wcet of
programs.

Property 2 ∀S, wcet(S) = wcet(F [S]).

Of course, the bcet of the transformed program will be
greater than the bcet of the initial program, but this is
the price to pay to guarantee a bound on the final fault-
tolerant program, whatever the occurrences of the faults.
We believe that, in the context of real-time and reactive
embedded systems, this drawback is worth the benefit.

The interested reader will find the corresponding proofs
(simple structural induction) in a companion paper [2]. The
transformation applied on our example Fac produces:

Fac1 = F [Fac] =read(i);
if i > 10 then i := 10; o := 1 else o := 1; skip3;
for l = 1 to 10 do

if l <= i then o := o ∗ l else skip
3;

write(o);

4.2 Checkpointing and heartbeating
Checkpointing and heartbeating both involve the inser-

tion of special commands at appropriate program points.
We introduce two new commands:

• hbeat sends a heartbeat telling the monitor that the
processor is alive. This command is implemented by
setting a special variable in the stable memory. The
vector HBT[1 . . . n] gathers the heartbeat variables of
the n tasks. The command hbeat in task i is imple-
mented as HBT[i] := 1.

• checkpt saves the current state in the stable memory.
It is sufficient to save only the live variables and only
those which have been modified since the last check-
point. This information can be inferred by static anal-
ysis techniques. Here, we simply assume that checkpt
saves enough variables to revert to a valid state when
needed.

Heartbeating is usually done periodically, whereas the
policies for checkpointing differ. Here, we chose periodic
heartbeats and checkpoints. In our context, the key prop-
erty is to meet the real-time constraints. We will see in
section 5 how to compute the optimal periods for those two
commands, optimality being defined w.r.t. those real-time
constraints.

We define below a transformation IT
c (S, t) that inserts the

command c every T units of time in the program S. The
time counter t counts the time remaining before the next in-
sertion. Of course, inserting the command c must not break
atomic statements. So, the time between insertions cannot
be exactly T , but the delay will be tightly bounded. The
transformation I will be used both for checkpointing and
heartbeating. Again, the rules below must be understood
like a case expression in ML:

1. IT
c (S, t) = S if exet(S) < t

2. IT
c (S, t) = c;IT

c (S, T − exet(c) + t) if t ≤ 0

3. IT
c (a, t) = a;c if 0 < t ≤ exet(a) and a is atomic

4. IT
c (S1;S2, t) = IT

c (S1, t);IT
c (S2, t1)

with t1 = t − exet(S1) if exet(S1) < t and
t1 = T − exet(c) − r if exet(S1) = t + q(T−exet(c))+r

with q ≥ 0 and 0 ≤ r < T − exet(c))

5. IT
c (if b then S1 else S2, t)

= if b then IT
c (S1, t − 1) else IT

c (S2, t − 1)

6. IT
c (for l = n1 to n2 do S, t)

= Fold(IT
c (Unfold(for l = n1 to n2 do S), t))

The transformation I relies on the property that all paths
of the program have the same execution time and that the
exact execution time (exet) of any statement is well-defined
(see Property 1 in Section 4.1). In order to insert heartbeats
afterward, this property should remain valid after the inser-
tion of checkpoints. We may either assume that checkpt

takes the same time when inserted in different paths (e.g.,
the two branches of a conditional), or re-apply the transfor-
mation F after checkpointing.

Rule 1 states that, when the statement S finishes before
the next insertion time t (i.e., exet(S) < t), the transfor-
mation terminates and nothing is inserted. In all the other
cases (rules 2 to 6), the wcet of S is greater than t and at
least one insertion must be performed.

Rule 2 applies when the time counter t is negative. This
case may arise when the ideal point for inserting the com-
mand c is “in the middle” of the boolean expression of a
conditional statement if . When t is negative, the command
must be inserted right away. The transformation proceeds
with the resulting program and the time target for the next
insertion is reset to T − exet(c) + t, that is, it is computed
w.r.t. the ideal previous insertion point to avoid any clock
drift.

Rule 3 states that, when the program is an atomic com-
mand a (whose exet is greater than or equal to t), the
command c is inserted right after a, that is (exet(a) − t)
units of time later than the ideal point.

Rule 4 states that the insertion in a sequence S1;S2 is
first done in S1. The residual time t1 used for the inser-
tion in S2 is either (t − exet(S1)) if no insertion has been



performed inside S1 or (T − exet(c) − r) if r is the time
residual remaining after the q + 1 insertions inside S1 (i.e.,
if exet(S1) = t + q(T − exet(c)) + r).

Rule 5 states that, for conditional statements, the inser-
tion is performed in both branches. The time of the test and
branching is taken into account by decrementing the time
residual (t − 1).

Rule 6 applies to loop statements. It unrolls the loop
completely (thanks to the Unfold operator), performs the
insertion in the unrolled resulting program and then factor-
izes code by folding code in for loops as much as possible
(thanks to the Fold operator). The Unfold and Fold opera-
tors are defined by the following transformation rules:

Unfold(for l = n1 to n2 do S) =
l := n1; S; l := n1 + 1; S; . . . l := n2; S,

Fold((for l = 1 to n do S); l := n + 1;S) =
for l = 1 to n + 1 do S.

Actually, it would be possible to express the transforma-
tion I such that it minimally unrolls loops and does not
need folding. However, the rules are much more complex to
present. Other solutions preventing the possibility of code
explosion exist (e.g., padding the body of loops to perform
the insertion at a fixed place).

The transformation assumes that the period T is greater
than the cost of the command, i.e., T > wcet(c). Oth-
erwise, the insertion may insert c within c forever (infinite
loop).

Property 3 In a transformed program IT
c (S, T ), the actual

time interval ∆ between the beginning of two successive com-
mands c is such that:

T − ε ≤ ∆ < T + ε

with ε being the wcet of the most expensive atomic instruc-
tion (assignment or test) in the program.

The formalization and proof of Property 3 is beyond the
scope of this paper and can be found in [2].

Checkpointing and heartbeating are performed using the
transformation I. Checkpoints are inserted first and heart-
beats last. The period between two checkpoints must take
into account the overhead that will be added by heartbeats
afterward. The overhead added by heartbeating during X

units of time is Xh

THB−h
with h = wcet(hbeat). So, if TCP

is the desired period of checkpoints, we must use the period
T ′

CP defined by the equation:

T
′
CP =

TCP

1 + h

THB−h

(2)

With these notations, the insertion of checkpoints and heart-
beats is described by the following ML code:

let S′ = IT ′

CP

checkpt(S, T ′
CP ) in

let (S′′;hbeat) = ITHB

hbeat(hbeat; S′, THB) in

S′′;hbeat(k)

A first heartbeat is added right at the beginning of S′, the
other heartbeats are inserted by I, then last heartbeat is re-
placed by hbeat(k). We can always ensure that S′ finishes
with a heartbeat by padding dummy code at the end. The

command hbeat(k) is a special heartbeat that sets the vari-
able to k instead of 1, i.e., HBT[i] := k. Following this last
heartbeat, the monitor will therefore decrease the shared
variable and will resume error detection when the variable
becomes 0 again. This mechanism accounts for the idle in-
terval of time between the termination of S′′ and the begin-
ning of the next period D. Hence, k has to be computed
as:

k =

‰

D −wcet(S′′;hbeat)

THB

ı

(3)

After the introduction of heartbeats, the period between

checkpoints will be T ′
CP

“

1 + h

THB−h

”

, i.e., TCP . More pre-

cisely, it follows from Property 3 that:

Property 4 The actual time intervals ∆CP and ∆HB be-
tween two successive checkpoints and heartbeats are such
that: TCP ≤ ∆CP < TCP + ε + h and THB ≤ ∆HB <

THB + ε.

This property is a corollary of property 3 (see [2] for the
proof).

As pointed out above, the transformation I requires the
period to be bigger than the cost of the command. For
checkpointing and heartbeating we must ensure that:

T
′
CP > wcet(hbeat) and THB > wcet(checkpt)

To illustrate these transformations on our previous exam-
ple, we take:

h̄ = wcet(hbeat) = 3, c̄ = wcet(checkpt) = 10,

THB = 10, TCP = 80.

So, we get T ′
CP = 80 − 3∗T ′

CP

10−3
= 56 hence I56

checkpt(Fac1, 56)
produces:

Fac2 = read(i);
if i > 10 then i := 10; o := 1 else o := 1; skip3;
for l = 1 to 6 do

if l <= i then o := o ∗ l else skip
3;

l := 7; if l <= i then checkpt; o := o ∗ l;
else checkpt; skip3;

for l = 8 to 10 do

if l <= i then o := o ∗ l else skip
3;

write(o);

For the sake of the example, we suppose for the next step
that checkpt, which takes 10 units of time, can be split in
two parts checkpt = checkpt1;checkpt2 where checkpt1

and checkpt2 take respectively 7 and 3 time units. We add
a heartbeat as a first instruction and, in order to finish with
a heartbeat, we must add 4 skip at the end. The trans-
formation I10

hbeat(Fac2, 10) inserts a heartbeat every 10 time
units and yields:



Fac3 = hbeat; read(i);
if i > 10 then i := 10; hbeat; o := 1;

else o := 1; hbeat; skip3;
for l = 1 to 6 do

if i > 0 then hbeat; o := o ∗ l;
else hbeat; skip3;

l := 7; if i > 0 then hbeat; checkpt1; hbeat;
checkpt2; o := o ∗ l;

else hbeat; checkpt1; hbeat;
checkpt2; skip

3;
for l = 8 to 10 do

hbeat;
if i > 0 then o := o ∗ l; else skip

3;
write(o); hbeat; skip5; hbeat;

In Fac3, the checkpoint is performed after 83 units of
time in both branches, which is inside the [80, 86) inter-
val of Property 4. Finally, since wcet(Fac3) = 143 and the
period is 200, Equation (3) gives

˚

200−143
10

ˇ

= 6, so the last
hbeat must be changed into hbeat(6). Figure 2 illustrates
the form of a general program (i.e., not Fac3) after all the
transformations:

5. IMPLEMENTING THE MONITOR
The monitor, executed on the spare processor, performs

failure detection by checking the heartbeats and performs
a roll-back recovery in case of a failure. In the following
subsections, we explain heartbeat detection and roll-back
recovery actions, together with the implementation details
and conditions for real-time guarantee.

5.1 Failure detection
The monitor periodically checks the heartbeat variables

HBT[i] to be sure of the liveness of the processor running
the tasks τi. For a correct operation and fast detection,
it must check each HBT[i] at least at the period THBi

.
Since each processor (or each task) has a potentially dif-
ferent heartbeat period by construction, the monitor should
concurrently check all the variables at their own speed. A
common solution to this problem is to schedule one peri-
odic task for each of the n other processors. The period of
the task is equal to the corresponding heartbeating inter-
val. Therefore, the monitor has n real-time periodic tasks
Γi = (Deti, THBi

), with 1 ≤ i ≤ n, plus one aperiodic recov-
ery task that will be explained later. The deadline of each
task Γi is equal to its period:

∀i ∈ {1, 2, ..., n}, wcet(Det i) ≤ THBi
. (4)

Preemptive scheduling techniques such as Rate-Monotonic
(RM) and Earliest-Deadline-First (EDF) settle the problem.
In our context, RM guarantees that Γ is schedulable if:

U =
n

X

i=1

wcet(Det i)

THBi

≤ 2(21/n − 1) (5)

Under the same assumptions, EDF guarantees that Γ is
schedulable if U ≤ 1. These schedulability conditions high-
light that EDF allows a better processor utilization while
both are appropriate and sufficient for scheduling the mon-
itoring tasks with deadline guarantee.

The program Det i is:

Det i = HBT[i] := HBT[i] − 1;
if HBT[i] = −2 then run Rec(i);

When it is positive, HBT[i] contains the number of THBi

periods before the next heartbeat of τi, hence the next up-
date of HBT[i]. When it is equal to −2, the monitors decides
that the processor i is faulty, so it must launch the failure
recovery program Rec. When it is equal to −1, the processor
i is suspect but not declared faulty. Indeed, it might just be
late, or HBT[i] might not have been updated yet due to the
clock drift between the two processors.

In order to guarantee the real-time constraints, we must
compute the worst case failure detection time αi for each
task τi. The detector is not synchronized with the tasks,
therefore the heartbeat send times (σk) of τi and the heart-
beat check times (σ′

k) of Det i may differ such that |σk−σ′
k| <

THBi
. In the worst case, i.e., if σk − σ′

k ' THBi
and τi has

failed right after sending a heartbeat, the detector can see
this heartbeat one period later and becomes suspect. It de-
tects the failure at the end of this period. Note that the pro-
gram transformation always guarantees the interval between
two consecutive heartbeats to be within [THBi

, THBi
+ ε).

Let Lr and Lw denote respectively the times necessary for
reading and writing a heartbeat variable, let ξi be the max-
imum time drift between Det i and τi within one heartbeat
interval (ξi � THBi

), then the worst case detection time αi

of the failure of task τi satisfies:

αi < 3(THBi
+ ε) + Lr + Lw + 3ξi (6)

Finally, the problem of the clock drift between the task
τi that writes HBT[i] and the task Det i that reads HBT[i]
must be addressed. Those two tasks have the same period
THBi

, but since the clocks of the two processors are not syn-
chronized, there are drifts. We assume that these clocks are
quasi-synchronous [7], meaning that any of the two clocks
cannot take the value true more than twice between two
successive true values of the other one. This is the case
in many embedded architectures (e.g., TTA and FlexRay
for automotive). With this hypothesis, τi can write HBT[i]
twice in a row, which is not a problem. Similarly, Det i can
read and decrement HBT[i] twice in a row, again which is
not a problem since Det i decides that τi is faulty only after
three successive decrements (i.e., from 1 to −2).

5.2 Roll-back recovery
As soon as the monitor detects a processor failure, it

restarts the failed task from the latest checkpoint. This
means that the monitor does not exist anymore since the
spare processor stops the monitor and starts executing the
failed task instead. The following program represents the
recovery operation:

Rec (x) = failed:=x; restart (τx, contextx);

where restart (τx, contextx) is a macro that stops the
monitor application and instead restarts τx from its lat-
est safe point specified by contextx. The shared vari-
able failed holds the identification number of the failed
task. failed = 0 indicates that there is no failed proces-
sor. failed = x ∈ {1, 2, . . . , n} indicates that τx has failed
and has been restarted on the spare processor. The recovery
time (denoted with β) after a failure occurrence can be de-
fined as the sum of the failure detection time plus the time
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Figure 2: Program with checkpointing and heartbeating.

to re-execute the part of the code after the last checkpoint.
If we denote the time for context reading by LC , then the
worst case recovery time is:

β =3(THB + ε) + TCP + Lr + Lw + LC

+3 max
1≤i≤n

ξi + wcet(Det) + wcet(Rec) (7)

5.3 Satisfying the real-time constraints
After the program transformations, the wcet of the fault-

tolerant program of the task (S′′, D), taking into account the
recovery time, is given by the following expression:

S̄
′′ = S̄ +

—

S̄

TCP

�

× c̄ +

„

S̄

THB
+ 1

«

× h̄ + β (8)

where S̄ and S̄′′ denote the wcets of S and S′′ respec-
tively. Note that this wcet includes both the error de-
tection time and recovery time. We are interested in the
optimum values, T ?

CP and T ?
HB, i.e., the values that offer

the best trade-off between fast failure detection, fast failure
recovery, and least overhead due to the code insertion. If
we combine Equations (8) and (7), we obtain a two-value
function f(TCP , THB) of the form:

f =
S̄ × c̄

TCP
+

S̄ × h̄

THB
+ 3THB + TCP + K (9)

where K is a constant. Note that neglecting the floor func-
tion in Equation (8) is for the purpose of an explicit cal-
culation and causes approximate results. Figure 3 below
illustrates the f function.
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Figure 3: f(TCP , THB).

Since the least overhead due to the code insertion means
the smallest wcet for S′′, we have to minimize f . Now, the

computation of its two partial derivatives yields:

∂f

∂TCP
= 1 − S̄ × c̄

T 2
CP

,
∂f

∂THB
= 3 − S̄ × h̄

T 2
HB

(10)

Since the two second partial derivatives are positive in
the (0, +∞) × (0, +∞) portion of the space, the function f

is convex and the optimal values T ?
CP and T ?

HB are those
that nullify the two first order partial derivatives i.e.,:

∂f

∂TCP

˛

˛

˛

˛

TCP =T ?

CP

= 0 and
∂f

∂THB

˛

˛

˛

˛

THB=T ?

HB

= 0

Hence, Equations (11) and (12) give the optimal values for
the heartbeat and checkpoint periods:

T
?
CP =

p

S̄ × c̄ (11)

T
?
HB =

r

1

3
S̄ × h̄ (12)

With our Fac example, we get T ?
CP =

√
84 × 10 ' 28.98 and

T ?
HB =

q

84×3
3

' 9.16. This means that the values we have

chosen, respectively 80 and 10, were not the optimal values.
Similar analysis and results are described in [26]. How-

ever, they do not have heartbeats and only consider the opti-
mal placement of checkpoints. To the best of our knowledge,
our result is the first to provide the optimal period for both
the heartbeating and the checkpointing in order to minimize
the wcet of the transformed program, whatever the occur-
rences of the faults (i.e., taking into account the detection
and recovery delays).

Finally, in order to satisfy the real-time property of the
whole system, the only criterion that should be checked is:

f(TCPi
, THBi

) < Di, ∀i ∈ {1, 2, . . . , n} (13)

Removing the assumption of zero communication time
just involves adding a worst case communication delay pa-
rameter in Equations (6) and (7), which has no effect on the
optimum values T ?

CP and T ?
HB.

6. EXTENSIONS

6.1 Tolerating transient failures
We have studied two main extensions of our technique

and have applied it to a real case study. The first extension
concerns the duration of failures. Our framework tolerates
one permanent processor failure. Relaxing this assumption
to make the system tolerate one transient processor failure
(one at a time of course) implies to address the following
issue. After restarting the failed task on the spare processor,



if the failure of the processor is transient, it could likely
happen that the failed task restarts too, although probably
in an incorrect state. Hence, a problem occurs when the
former task updates its outputs since we would have two
tasks updating the same output in parallel. This problem
can be overcome by enforcing a property such that all tasks
must check the shared variables failed and spare so that
they can learn the status of the system and take a precaution
if they have already been replaced by the monitor. When
a task realizes that it has been restarted by the monitor, it
must terminate immediately. In this case, since there is no
more monitor in the system, the task terminates itself and
restarts the monitor application, thus returning the system
to its normal state where it can again tolerate one transient
processor failure. The following code implements this action:

Remi = if failed = i and spare 6= This Processor then

spare := This Processor;
failed := 0;
restart monitor ;

where ThisProcessor denotes the ID of the processor exe-
cuting that code and restart monitor is a macro that ter-
minates the task and restarts the monitoring application.
The shared variable spare is initially set to the identifica-
tion number of the spare processor. Assume that the task
i has failed and has been restarted on the spare processor.
When the previous code is executed on the spare processor,
it will see that even if failed is set to i, the task should
not be stopped since it runs on the spare processor. On the
other hand, the same task restarting after a transient failure
on the faulty processor will detect that it must stop and will
restart the monitor. The code Rem i must be added to the
program of τi before the output update:

write(o) =⇒ Rem i; write(o);

In order to detect any processor failure and to guarantee the
real-time constraints, the duration of the transient failure
must be larger than the max of the failure detection times
αi (c.f. Equation (6) in Section 5.1).

6.2 Tolerating several failures at a time
The second extension is to tolerate several failures at a

time. We assumed that the system had one spare processor
running a special monitoring program. In fact, additional
spare processors can be added to tolerate more processor
failures at a time. This does not incur any problem with our
proposed approach. It only requires the implementation of
a coordination mechanism between the spare processors, in
order to decide which one of them should resume the monitor
application after the monitor processor has restarted a failed
task τi. This issue can be easily solved by statically ordering
the processors.

7. APPLICATION: THE CYCAB VEHICLE
We give a brief discussion about the implementation of

the proposed methods through a real application called Cy-

Cab. Additional details are available in [2]. The CyCab

is a small vehicle designed for transportation in downtown
areas, amusement parks etc. [4]. The physical architecture
consists of two MPC555 micro-controllers, a PC, and a CAN
bus. We call these nodes F555, R555, and ROOT respectively.

Figure 4: Architecture graph of the CyCab applica-

tion.

In order to implement our program transformations, we have
added one more node, named MONITOR (see Figure 4).

We have used as a case study the “manual-driving” ap-
plication. It is specified as a data-dependency graph, whose
nodes are atomic computation tasks (written in C) and whose
edges are data-dependencies between these tasks. The wcet

of these atomic tasks onto the nodes range between 0.2ms

and 0.6ms. Also, because some tasks use some specific sen-
sors or actuators that are physically located on the CyCab

vehicle, they can only be executed on some of the nodes; in
that case, their wcet is set to ∞ on all the other nodes.
Finally, we have chosen, for this case study, to work at the
task level, i.e., not looking at the code inside the tasks. The
benefit of working at this coarse level is that the computa-
tional cost of applying our program transformations will be
low. The drawback is that the ε parameter (equal to the
min of the wcets of all the tasks, i.e., 0.2ms) will be rather
big, therefore making it difficult to be optimal since we will
not be able to insert the heartbeats and checkpoints exactly
at the designated points.

We start by distributing this application on the archi-
tecture of Figure 4 using the SynDEx tool that supports
the Algorithm Architecture Adequation (AAA) methodol-
ogy [13]. AAA takes the application graph and distributes
it onto the given architecture. It is based on graph models
to exhibit the potential parallelism of the application, and
the implementation is formalized in terms of graph transfor-
mations. In our case, we obtain a distributed static schedule
of the tasks on the architecture, with a global wcet of re-
spectively 4.19ms, 3.05ms, and 4.10ms on F555, R555, and
ROOT.

The advantage of applying our program transformations
after the distribution of the application by SynDEx is that
each node (F555, R555, and ROOT) now has a single static
schedule that follows the basic model of Figure 1. So we can
apply our program transformations to insert heartbeating
and checkpointing. Note that, since the data-dependency
graph of the application has neither conditional (if ) nor it-
eration (for ) edges, it is not necessary to apply our padding
code transformation. However, since the application consists
of dependent tasks, our technique needs to be slightly mod-
ified as follows. First, we fill the idle times between tasks
with no-operations. Then, task dependency may cause new
idle times after placing a checkpoint or heartbeat, since an
insertion slightly changes the static schedule. So, after each
insertion, the resulting static schedule is checked once more
and all idle times are filled again before continuing with the
next insertion.

The wcet of heartbeating is equal to 0.06ms on each
node. The wcet of checkpointing is also equal to 0.06ms

on each node. Furthermore, the worst-case communication
time between any heartbeat task and its corresponding mon-



Figure 5: Application graphs for heartbeating and

checkpointing.

itor task is equal to 0.12ms. The worst-case communication
time between any checkpoint task and its corresponding sta-
ble memory save task is equal to 0.16ms. Here, we have cho-
sen to use SynDEx to schedule the monitor tasks instead
of a Rate Monotonic policy. This is achieved by adding the
data-dependency graph of Figure 5. With these figures, c̄

and h̄ are respectively equal to 0.18ms and 0.21ms. We thus
compute T ∗

CP = 1.54ms and T ∗
HB = 1.42ms.

With these figures, applying our automatic transforma-
tions to the schedule of each node produces a new static
distributed schedule whose wcet is equal to 6.21ms. The
overhead due to the fault-tolerance is therefore 6.21−4.10 =
2.11ms.

8. RELATED WORK
Related work on failure detectors is abundant. On the

theoretical side, Fisher et al. have demonstrated that, in
an asynchronous distributed systems (i.e., no global clock,
no knowledge of the relative speeds of the processes or the
speed of communication) with reliable communications (al-
though messages may arrive in another order than they were
sent), if one single process can fail permanently, then there
is no algorithm which can guarantee consensus on a binary
value in finite time [12]. Indeed, it is impossible to tell if
a process has died or if it is just very slow in sending its
message. If this delayed process’s input is necessary, then
the algorithm may be delayed indefinitely. Hence no form of
fault-tolerance can be implemented in totally asynchronous
systems. Usually, one assumption is relaxed, for instance
an upper bound on the communication time is known, and
this is exactly what we do in this paper to design our failure
detector. Then, Chandra and Toueg have formalized unre-
liable failure detectors in terms of completeness and accu-
racy [8]. In particular, they have shown what properties are
required to reach consensus in the presence of crash failures.
On the practical side, Aggarwal and Gupta present in [1]
a short survey on failure detectors. They explain the push
and pull methods in detail and introduces QoS techniques
to enhance the performance of failure detectors.

Other works on failure recovery include the efforts of re-
serving sufficient slack in dynamic schedule, i.e., gaps be-
tween tasks due to the precedence, resources or timing con-
straints, so that the scheduler can re-execute faulty tasks
without jeopardizing the deadline guarantees [24]. Further
studies proposed different heuristics for re-execution of faulty
tasks in imprecise computation models such that faulty man-
datory sub-tasks may supersede optional sub-tasks [3]. In
contrast, our work is entirely in the static scheduling con-
text.

Bronevetsky et al. have designed and implemented a pre-
compiler for C/MPI programs in order to automatically in-

sert checkpoints [6]. The target architecture consists of sev-
eral fail-silent processors connected by a reliable message de-
livery system, and equipped with a distributed failure detec-
tor mechanism for detecting failed processes. Since the tasks
can exchange messages, the local checkpoints must be coor-
dinated to form a consistent global checkpoint. To achieve
this, the authors have developed a new protocol for non-
blocking coordination that works smoothly with application-
level checkpointing. Yet, checkpoint insertion is not fully au-
tomatic since the programmer must manually insert calls to
a function called PotentialCheckpoint at points in the ap-
plication where he/she wants checkpointing to occur. Also,
the authors do not consider the issue of real-time constraints.

Regarding automatic transformations for fault-tolerance,
our work is related to the work of Kulkarni and Arora [18].
Their technique involves synthesizing a fault-tolerant pro-
gram starting from a fault-intolerant program. A program
is a set of states, each state being a valuation of the pro-
gram’s variables, and a set of transitions.

Furthermore, Kulkarni and Ebnenasir study the automatic
transformation of a fault-intolerant program (with the high
atomicity execution model) into a multi-tolerant program [19].
This is a program that is failsafe tolerant to one class of
faults, non-masking tolerant to another class of faults, and
masking tolerant to still another class of faults. The tech-
nique is based on [18]. Finally, our program transforma-
tions are related to Software Thread Integration (STI) [10].
STI involves weaving a host secondary thread inside a real-
time primary thread by filling the idle time of the primary
thread with portions of the secondary thread. Compared to
STI, our approach formalizes the program transformations
and also guarantees that the real-time constraints of the sec-
ondary thread will be preserved by the obtained thread (and
not only those of the primary thread).

9. CONCLUSION
We have presented a formal approach to implement clas-

sical fault-tolerance techniques in real-time systems. Our
fault-intolerant real-time application is distributed onto pro-
cessors showing omission/crash failure behavior, and of one
spare processor for the hardware redundancy necessary to
the fault-tolerance. We have derived program transforma-
tions that automatically convert the programs such that
the resulting system is capable of tolerating one perma-
nent or transient processor failure at a time. For this pur-
pose, heartbeats and checkpoints are inserted automatically,
which yields the advantage of being transparent to the de-
veloper, and on a periodic basis, which yields the advantage
of relatively simple verification of the real-time constraints.

Choosing the lengths of checkpointing and heartbeating
intervals is delicate. Long intervals lead to long roll-back
time, while too frequent checkpointing leads to high over-
heads. We derived formulae for choosing the optimal check-
pointing and hearbeating intervals. As a result, the overhead
due to adding the fault-tolerance is minimized.

To the best of our knowledge, the two contributions pre-
sented in this article (i.e., the formalization of adding fault-
tolerance with automatic program transformations, and the
computation of the optimal checkpointing and heartbeating
periods to minimize the fault-tolerance overhead) are novel.

We have also proposed mechanisms to schedule all the
detection tasks onto the spare processor, in such a way that
the detection period is the same as the heartbeat period.



Finally, we have shown with a case-study that our work can
be extended to the case where processors execute multiple
tasks with an appropriate static scheduling mechanism.

This transparent periodic implementation, however, has
no knowledge about the semantics of the application and
may yield large overheads. In the future, we propose to over-
come this drawback by shifting checkpoint locations within
a predefined safe time interval such that the overhead will
be further reduced.

Finally, these fundamental fault-tolerance mechanisms can
be followed by other program transformations in order to tol-
erate different types of faults such as communication, data
upsetting etc. These transformations are seemingly more
user dependent, which may lead to the design of aspect-
oriented based tools.
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