module Interval: sig
.. end
type
t = {
}
val of_scalar : Apron.Scalar.t -> Apron.Scalar.t -> t
Build an interval from a lower and an upper bound
val of_infsup : Apron.Scalar.t -> Apron.Scalar.t -> t
depreciated
val of_mpq : Mpq.t -> Mpq.t -> t
val of_mpqf : Mpqf.t -> Mpqf.t -> t
val of_int : int -> int -> t
val of_frac : int -> int -> int -> int -> t
val of_float : float -> float -> t
val of_mpfr : Mpfr.t -> Mpfr.t -> t
Create an interval from resp. two
- multi-precision rationals
Mpq.t
- multi-precision rationals
Mpqf.t
- integers
- fractions
x/y
and z/w
- machine floats
- Mpfr floats
val is_top : t -> bool
Does the interval represent the universe ([-oo,+oo]
) ?
val is_bottom : t -> bool
Does the interval contain no value ([a,b]
with a>b) ?
val is_leq : t -> t -> bool
Inclusion test. is_leq x y
returns true
if x
is included in y
val cmp : t -> t -> int
Non Total Comparison:
0: equality
-1: i1 included in i2
+1: i2 included in i1
-2: i1.inf less than or equal to i2.inf
+2: i1.inf greater than i2.inf
val equal : t -> t -> bool
Equality test
val is_zero : t -> bool
Is the interval equal to 0,0
?
val equal_int : t -> int -> bool
Is the interval equal to i,i
?
val neg : t -> t
Negation
val top : t
val bottom : t
Top and bottom intervals (using DOUBLE
coefficients)
val set_infsup : t -> Apron.Scalar.t -> Apron.Scalar.t -> unit
Fill the interval with the given lower and upper bouunds
val set_top : t -> unit
val set_bottom : t -> unit
Fill the interval with top (resp. bottom) value
val print : Format.formatter -> t -> unit
Print an interval, under the format [inf,sup]